These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36079999)

  • 1. Tailoring the Scattering Response of Optical Nanocircuits Using Modular Assembly.
    Farooq S; Shafique S; Ahsan Z; Cardozo O; Wali F
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular assembly of optical nanocircuits.
    Shi J; Monticone F; Elias S; Wu Y; Ratchford D; Li X; Alù A
    Nat Commun; 2014 May; 5():3896. PubMed ID: 24871450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared metatronic nanocircuits by design.
    Caglayan H; Hong SH; Edwards B; Kagan CR; Engheta N
    Phys Rev Lett; 2013 Aug; 111(7):073904. PubMed ID: 23992069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials in optical metatronic circuit networks.
    Abbasi F; Engheta N
    Opt Express; 2014 Oct; 22(21):25109-19. PubMed ID: 25401543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular Organic Nanowires as Plasmonic Interconnects.
    Armao JJ; Domoto Y; Umehara T; Maaloum M; Contal C; Fuks G; Moulin E; Decher G; Javahiraly N; Giuseppone N
    ACS Nano; 2016 Feb; 10(2):2082-90. PubMed ID: 26814600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Waveguide metatronics: Lumped circuitry based on structural dispersion.
    Li Y; Liberal I; Della Giovampaola C; Engheta N
    Sci Adv; 2016 Jun; 2(6):e1501790. PubMed ID: 27386566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individual nanoantennas loaded with three-dimensional optical nanocircuits.
    Liu N; Wen F; Zhao Y; Wang Y; Nordlander P; Halas NJ; Alù A
    Nano Lett; 2013 Jan; 13(1):142-7. PubMed ID: 23215034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental realization of optical lumped nanocircuits at infrared wavelengths.
    Sun Y; Edwards B; Alù A; Engheta N
    Nat Mater; 2012 Jan; 11(3):208-12. PubMed ID: 22286335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly-Sensitive Refractive Index Sensing by Near-infrared Metatronic Nanocircuits.
    Rashed AR; Gudulluoglu B; Yun HW; Habib M; Boyaci IH; Hong SH; Ozbay E; Caglayan H
    Sci Rep; 2018 Jul; 8(1):11457. PubMed ID: 30061578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials.
    Engheta N
    Science; 2007 Sep; 317(5845):1698-702. PubMed ID: 17885123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Batch preparation of gold nanoparticles with highly uniform morphology and tunable plasmonic properties.
    Liu T; Wang J; Xie Z; Wan L; Xiang J; Zhang Y; Luo S; Bin R; Liu G
    Nanotechnology; 2020 Oct; 31(40):405603. PubMed ID: 32526722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules.
    Ahn W; Boriskina SV; Hong Y; Reinhard BM
    ACS Nano; 2012 Jan; 6(1):951-60. PubMed ID: 22148502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics.
    Liu HW; Lin FC; Lin SW; Wu JY; Chou BT; Lai KJ; Lin SD; Huang JS
    ACS Nano; 2015 Apr; 9(4):3875-86. PubMed ID: 25848830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifying Thermal Switchability of Liquid Crystalline Nanoparticles by Alkyl Ligands Variation.
    Grzelak J; Żuk M; Tupikowska M; Lewandowski W
    Nanomaterials (Basel); 2018 Mar; 8(3):. PubMed ID: 29518916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Gold-Silver Rough-Surface Nanoparticles on Plasmonic Light Scattering in Organic Solar Cells.
    Tran QN; Lee HK; Kim JH; Park SJ
    J Nanosci Nanotechnol; 2020 Jan; 20(1):304-311. PubMed ID: 31383171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of optical lumped nanocircuit elements and effects of substrates.
    Alú A; Salandrino A; Engheta N
    Opt Express; 2007 Oct; 15(21):13865-76. PubMed ID: 19550658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of Plasmonic Superradiance in Metallic Nanoparticle Assembly by Light-Induced Force and Fluctuations.
    Iida T
    J Phys Chem Lett; 2012 Feb; 3(3):332-6. PubMed ID: 26285847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Addressing the Influence of Localized Plasmon Resonance on the Magneto-Optical Properties of Cobalt Ferrite Nanoparticles.
    Campo G; Pineider F; Fantechi E; Innocenti C; Caneschi A; Fernández CJ
    J Nanosci Nanotechnol; 2019 Aug; 19(8):4946-4953. PubMed ID: 30913806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.