These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36080002)

  • 1. Nematicidal Potential of Green Silver Nanoparticles Synthesized Using Aqueous Root Extract of
    Rani K; Devi N; Banakar P; Kharb P; Kaushik P
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green synthesis and anthelmintic activity of silver nanoparticles using Morus Alba Fruit extract against different stages of equine strongyles.
    Samiei A; Tavassoli M; Esmaeilnejad B
    Vet Res Commun; 2024 Aug; 48(4):2083-2098. PubMed ID: 38568387
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Ghareeb RY; Abdelsalam NR; El Maghraby DM; Ghozlan MH; El-Argawy E; Abou-Shanab RAI
    Front Plant Sci; 2022; 13():870518. PubMed ID: 35720553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green Synthesized Silver Nanoparticles Mitigate Biotic Stress Induced by
    Danish M; Altaf M; Robab MI; Shahid M; Manoharadas S; Hussain SA; Shaikh H
    ACS Omega; 2021 May; 6(17):11389-11403. PubMed ID: 34056294
    [No Abstract]   [Full Text] [Related]  

  • 5. Nematicidal activity of seaweed-synthesized silver nanoparticles and extracts against Meloidogyne incognita on tomato plants.
    Ghareeb RY; Shams El-Din NGE; Maghraby DME; Ibrahim DSS; Abdel-Megeed A; Abdelsalam NR
    Sci Rep; 2022 Mar; 12(1):3841. PubMed ID: 35264583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of High throughput microcrystalline cellulose decorated silver nanoparticles as an eco-nematicide on root-knot nematodes.
    Fouda MMG; Abdelsalam NR; Gohar IMA; Hanfy AEM; Othman SI; Zaitoun AF; Allam AA; Morsy OM; El-Naggar M
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110805. PubMed ID: 31972444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First report of
    Hajihassani A; Ye W; Hampton BB
    J Nematol; 2019; 51():1-3. PubMed ID: 31088018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver nanoparticles as a potential nematicide against
    Baronia R; Kumar P; Singh SP; Walia RK
    J Nematol; 2020; 52():1-9. PubMed ID: 32180384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of Cladophora glomerata extract nanoparticles as eco-nematicide and enhancing the defense responses of tomato plants infected by Meloidogyne javanica.
    Ghareeb RY; Alfy H; Fahmy AA; Ali HM; Abdelsalam NR
    Sci Rep; 2020 Nov; 10(1):19968. PubMed ID: 33203960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nematicidal Effects of Silver Nanoparticles on Root-knot Nematode in Bermudagrass.
    Cromwell WA; Yang J; Starr JL; Jo YK
    J Nematol; 2014 Sep; 46(3):261-6. PubMed ID: 25275999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nematicidal potential of Streptomyces antibioticus strain M7 against Meloidogyne incognita.
    Sharma M; Jasrotia S; Ohri P; Manhas RK
    AMB Express; 2019 Oct; 9(1):168. PubMed ID: 31641879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nematicidal Potential of Sulla (
    D'Addabbo T; Tava A; Argentieri MP; Biazzi E; Candido V; Avato P
    Plants (Basel); 2022 Sep; 11(19):. PubMed ID: 36235414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenylacetic acid-producing Rhizoctonia solani represses the biosynthesis of nematicidal compounds in vitro and influences biocontrol of Meloidogyne incognita in tomato by Pseudomonas fluorescens strain CHA0 and its GM derivatives.
    Siddiqui IA; Shaukat SS
    J Appl Microbiol; 2005; 98(1):43-55. PubMed ID: 15610416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polysulfides Applied as Formulated Garlic Extract to Protect Tomato Plants against the Root-Knot Nematode
    Eder R; Consoli E; Krauss J; Dahlin P
    Plants (Basel); 2021 Feb; 10(2):. PubMed ID: 33670802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3-(Methylthio)Propionic Acid from
    Chen L; Wang Y; Zhu L; Min Y; Tian Y; Gong Y; Liu X
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathogenicity and Volatile Nematicidal Metabolites from
    Mei X; Wang X; Li G
    Microorganisms; 2021 Oct; 9(11):. PubMed ID: 34835396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nemato-toxic analysis of several chopped plant leaves against Meloidogyne incognita affecting tomato In vitro and In pots.
    Ikram M; Shariq M; Khan F; Khan A; Fatima S; Siddiqui MA
    Bioinformation; 2022; 18(4):354-363. PubMed ID: 36909698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilizing bio-synthesis of nanomaterials as biological agents for controlling soil-borne diseases in pepper plants: root-knot nematodes and root rot fungus.
    Y Ghareeb R; Belal EB; El-Khateeb NMM; Shreef BA
    BMC Plant Biol; 2024 Feb; 24(1):110. PubMed ID: 38355449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grass-Shaped Zinc Oxide Nanoparticles Synthesized by the Sol-Gel Process and Their Antagonistic Properties towards the Biotrophic Parasite,
    Khan A; Ali Khan A; Jameel M; Farhan Khan M; Khan M; Khan A; Ahmad F; Alam M
    Bioinorg Chem Appl; 2023; 2023():6834710. PubMed ID: 37009336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytochemical Analysis and Binding Interaction of Cotton Seed Cake Derived Compounds with Target Protein of
    Almutairi FM; Khan A; Ajmal MR; Khan RH; Khan MF; Lal H; Ullah MF; Ahmad F; Ahamad L; Khan A; Arif H; Ayaz Ahmad M
    Life (Basel); 2022 Dec; 12(12):. PubMed ID: 36556474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.