These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 36080013)
1. Data-Enhanced Deep Greedy Optimization Algorithm for the On-Demand Inverse Design of TMDC-Cavity Heterojunctions. Zhao Z; You J; Zhang J; Tang Y Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080013 [TBL] [Abstract][Full Text] [Related]
2. A unique physics-inspired deep-learning-based platform introducing a generalized tool for rapid optical-response prediction and parametric-optimization for all-dielectric metasurfaces. Noureen S; Mehmood MQ; Ali M; Rehman B; Zubair M; Massoud Y Nanoscale; 2022 Nov; 14(44):16436-16449. PubMed ID: 36326120 [TBL] [Abstract][Full Text] [Related]
4. Microsphere-coupled light emission control of van der Waals heterostructures. Lee H; Nguyen VT; Park JY; Lee J Nanoscale; 2021 Feb; 13(7):4262-4268. PubMed ID: 33595024 [TBL] [Abstract][Full Text] [Related]
5. A universal deep learning approach for modeling the flow of patients under different severities. Jiang S; Chin KS; Tsui KL Comput Methods Programs Biomed; 2018 Feb; 154():191-203. PubMed ID: 29249343 [TBL] [Abstract][Full Text] [Related]
6. Optical circular dichroism engineering in chiral metamaterials utilizing a deep learning network. Tao Z; You J; Zhang J; Zheng X; Liu H; Jiang T Opt Lett; 2020 Mar; 45(6):1403-1406. PubMed ID: 32163977 [TBL] [Abstract][Full Text] [Related]
7. Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS Shastry TA; Balla I; Bergeron H; Amsterdam SH; Marks TJ; Hersam MC ACS Nano; 2016 Nov; 10(11):10573-10579. PubMed ID: 27783505 [TBL] [Abstract][Full Text] [Related]
8. Physics-Guided Neural-Network-Based Inverse Design of a Photonic Liang B; Xu D; Yu N; Xu Y; Ma X; Liu Q; Asif MS; Yan R; Liu M ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35649169 [TBL] [Abstract][Full Text] [Related]
9. Data-driven design of thin-film optical systems using deep active learning. Hong Y; Nicholls DP Opt Express; 2022 Jun; 30(13):22901-22910. PubMed ID: 36224980 [TBL] [Abstract][Full Text] [Related]
10. Intelligent inverse treatment planning via deep reinforcement learning, a proof-of-principle study in high dose-rate brachytherapy for cervical cancer. Shen C; Gonzalez Y; Klages P; Qin N; Jung H; Chen L; Nguyen D; Jiang SB; Jia X Phys Med Biol; 2019 May; 64(11):115013. PubMed ID: 30978709 [TBL] [Abstract][Full Text] [Related]
11. Physics-model-based neural networks for inverse design of binary phase planar diffractive lenses. He J; Guo Z; Zhang Y; Lu Y; Wen F; Da H; Zhou G; Yuan D; Ye H Opt Lett; 2023 Mar; 48(6):1474-1477. PubMed ID: 36946956 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Emission from Interlayer Excitons Coupled to Plasmonic Gap Cavities. Tran TN; Kim S; White SJU; Nguyen MAP; Xiao L; Strauf S; Yang T; Aharonovich I; Xu ZQ Small; 2021 Nov; 17(45):e2103994. PubMed ID: 34605163 [TBL] [Abstract][Full Text] [Related]
13. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots. Fouladi-Oskouei J; Shojaei S; Liu Z J Phys Condens Matter; 2018 Apr; 30(14):145301. PubMed ID: 29460851 [TBL] [Abstract][Full Text] [Related]
14. Risk management system and intelligent decision-making for prefabricated building project under deep learning modified teaching-learning-based optimization. Liu H; He Y; Hu Q; Guo J; Luo L PLoS One; 2020; 15(7):e0235980. PubMed ID: 32678855 [TBL] [Abstract][Full Text] [Related]
15. Hybrid supervised and reinforcement learning for the design and optimization of nanophotonic structures. Yeung C; Pham B; Zhang Z; Fountaine KT; Raman AP Opt Express; 2024 Mar; 32(6):9920-9930. PubMed ID: 38571216 [TBL] [Abstract][Full Text] [Related]
16. Enhanced excitation and emission from 2D transition metal dichalcogenides with all-dielectric nanoantennas. Lepeshov S; Krasnok A; Alù A Nanotechnology; 2019 Jun; 30(25):254004. PubMed ID: 30844774 [TBL] [Abstract][Full Text] [Related]
17. A cyclical deep learning based framework for simultaneous inverse and forward design of nanophotonic metasurfaces. Mall A; Patil A; Sethi A; Kumar A Sci Rep; 2020 Nov; 10(1):19427. PubMed ID: 33173073 [TBL] [Abstract][Full Text] [Related]
18. Nanophotonic inverse design with deep neural networks based on knowledge transfer using imbalanced datasets. Qiu C; Wu X; Luo Z; Yang H; He G; Huang B Opt Express; 2021 Aug; 29(18):28406-28415. PubMed ID: 34614972 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamically Stable Synthesis of Large-Scale and Highly Crystalline Transition Metal Dichalcogenide Monolayers and their Unipolar n-n Heterojunction Devices. Lee J; Pak S; Giraud P; Lee YW; Cho Y; Hong J; Jang AR; Chung HS; Hong WK; Jeong HY; Shin HS; Occhipinti LG; Morris SM; Cha S; Sohn JI; Kim JM Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28692787 [TBL] [Abstract][Full Text] [Related]
20. Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network. Chen Y; Zhu J; Xie Y; Feng N; Liu QH Nanoscale; 2019 May; 11(19):9749-9755. PubMed ID: 31066432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]