BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 36080043)

  • 21. Polymeric, Cost-Effective, Dopant-Free Hole Transport Materials for Efficient and Stable Perovskite Solar Cells.
    Zhang F; Yao Z; Guo Y; Li Y; Bergstrand J; Brett CJ; Cai B; Hajian A; Guo Y; Yang X; Gardner JM; Widengren J; Roth SV; Kloo L; Sun L
    J Am Chem Soc; 2019 Dec; 141(50):19700-19707. PubMed ID: 31747277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods.
    Shi Z; Jayatissa AH
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29734667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complex Metal Oxides as Emerging Inorganic Hole-Transporting Materials for Perovskite Solar Cells.
    Bai Y; He J; Ran R; Zhou W; Wang W; Shao Z
    Small; 2024 Jun; 20(25):e2310227. PubMed ID: 38196154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface Properties of CH3NH3PbI3 for Perovskite Solar Cells.
    Haruyama J; Sodeyama K; Han L; Tateyama Y
    Acc Chem Res; 2016 Mar; 49(3):554-61. PubMed ID: 26901120
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dopant-Free π-Conjugated Hole Transport Materials for Highly Stable and Efficient Perovskite Solar Cells.
    Deng Z; Cui S; Kou K; Liang D; Shi X; Liu J
    Front Chem; 2021; 9():664504. PubMed ID: 33816442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inorganic Materials by Atomic Layer Deposition for Perovskite Solar Cells.
    Park HH
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organic Monomolecular Layers Enable Energy-Level Matching for Efficient Hole Transporting Layer Free Inverted Perovskite Solar Cells.
    Kong W; Li W; Liu C; Liu H; Miao J; Wang W; Chen S; Hu M; Li D; Amini A; Yang S; Wang J; Xu B; Cheng C
    ACS Nano; 2019 Feb; 13(2):1625-1634. PubMed ID: 30673271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Efficient Amphiphilic-Type Triphenylamine-Based Organic Hole Transport Material for High-Performance and Ambient-Stable Dopant-Free Perovskite and Organic Solar Cells.
    Reddy SS; Park HY; Kwon H; Shin J; Kim CS; Song M; Jin SH
    Chemistry; 2018 Apr; 24(24):6426-6431. PubMed ID: 29436044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simple-Structured Low-Cost Dopant-Free Hole-Transporting Polymers for High-Stability CsPbI
    Jeong W; Ha SR; Jang JW; Jeong MK; Hussain MW; Ahn H; Choi H; Jung IH
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13400-13409. PubMed ID: 35258925
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency.
    Ameen S; Rub MA; Kosa SA; Alamry KA; Akhtar MS; Shin HS; Seo HK; Asiri AM; Nazeeruddin MK
    ChemSusChem; 2016 Jan; 9(1):10-27. PubMed ID: 26692567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of CuIn
    Khorasani A; Marandi M; Khosroshahi R; Malekshahi Byranvand M; Dehghani M; Iraji Zad A; Tajabadi F; Taghavinia N
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30838-30845. PubMed ID: 31408321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly-efficient and low-temperature perovskite solar cells by employing a Bi-hole transport layer consisting of vanadium oxide and copper phthalocyanine.
    Lei T; Dong H; Xi J; Niu Y; Xu J; Yuan F; Jiao B; Zhang W; Hou X; Wu Z
    Chem Commun (Camb); 2018 Jun; 54(48):6177-6180. PubMed ID: 29845123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Side-Chain Engineering of Diketopyrrolopyrrole-Based Hole-Transport Materials to Realize High-Efficiency Perovskite Solar Cells.
    Sharma A; Singh R; Kini GP; Hyeon Kim J; Parashar M; Kim M; Kumar M; Kim JS; Lee JJ
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7405-7415. PubMed ID: 33534549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Promotion Strategies of Hole Transport Materials by Electronic and Steric Controls for n-i-p Perovskite Solar Cells.
    Cheng F; Cao F; Ru Fan F; Wu B
    ChemSusChem; 2022 Jul; 15(14):e202200340. PubMed ID: 35377527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent progress in perovskite solar cells: the perovskite layer.
    Dai X; Xu K; Wei F
    Beilstein J Nanotechnol; 2020; 11():51-60. PubMed ID: 31976196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large Grain-Based Hole-Blocking Layer-Free Planar-Type Perovskite Solar Cell with Best Efficiency of 18.20.
    Yu H; Ryu J; Lee JW; Roh J; Lee K; Yun J; Lee J; Kim YK; Hwang D; Kang J; Kim SK; Jang J
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8113-8120. PubMed ID: 28211274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlling Molecular Orientation of Small Molecular Dopant-Free Hole-Transport Materials: Toward Efficient and Stable Perovskite Solar Cells.
    Li W; Wu C; Han X
    Molecules; 2023 Mar; 28(7):. PubMed ID: 37049838
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inorganic CuFeO
    Akin S; Sadegh F; Turan S; Sonmezoglu S
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45142-45149. PubMed ID: 31701749
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved efficiency and carrier dynamic transportation behavior in perovskite solar cells with CuInS
    Li H; Luo D; Liu L; Xiong D; Peng Y
    Dalton Trans; 2021 Jun; 50(25):8837-8844. PubMed ID: 34100052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding of carrier dynamics, heterojunction merits and device physics: towards designing efficient carrier transport layer-free perovskite solar cells.
    Liao JF; Wu WQ; Jiang Y; Zhong JX; Wang L; Kuang DB
    Chem Soc Rev; 2020 Jan; 49(2):354-381. PubMed ID: 31859320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.