These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 36080205)
1. Density Functional Theory Study on NiN Hou C; Kang L; Zhu M Molecules; 2022 Aug; 27(17):. PubMed ID: 36080205 [TBL] [Abstract][Full Text] [Related]
2. The reaction mechanism and selectivity of acetylene hydrogenation over Ni-Ga intermetallic compound catalysts: a density functional theory study. Rao DM; Zhang ST; Li CM; Chen YD; Pu M; Yan H; Wei M Dalton Trans; 2018 Mar; 47(12):4198-4208. PubMed ID: 29479598 [TBL] [Abstract][Full Text] [Related]
3. A DFT + U study of acetylene selective hydrogenation over anatase supported PdaAgb (a + b = 4) cluster. Meng LD; Wang GC Phys Chem Chem Phys; 2014 Sep; 16(33):17541-50. PubMed ID: 25026216 [TBL] [Abstract][Full Text] [Related]
4. The DFT study of Si-doped Pd Zhao Y; Zhu M; Kang L J Mol Graph Model; 2018 Aug; 83():129-137. PubMed ID: 29936227 [TBL] [Abstract][Full Text] [Related]
5. BNPd single-atom catalysts for selective hydrogenation of acetylene to ethylene: a density functional theory study. Gong W; Kang L R Soc Open Sci; 2018 Jul; 5(7):171598. PubMed ID: 30109043 [TBL] [Abstract][Full Text] [Related]
6. Pd Single-Atom Catalysts on Nitrogen-Doped Graphene for the Highly Selective Photothermal Hydrogenation of Acetylene to Ethylene. Zhou S; Shang L; Zhao Y; Shi R; Waterhouse GIN; Huang YC; Zheng L; Zhang T Adv Mater; 2019 May; 31(18):e1900509. PubMed ID: 30873691 [TBL] [Abstract][Full Text] [Related]
7. Theoretical study on the reaction mechanism and selectivity of acetylene semi-hydrogenation on Ni-Sn intermetallic catalysts. Rao DM; Sun T; Yang YS; Yin P; Pu M; Yan H; Wei M Phys Chem Chem Phys; 2019 Jan; 21(3):1384-1392. PubMed ID: 30601513 [TBL] [Abstract][Full Text] [Related]
8. Effect of point defects on acetylene hydrogenation reaction over Ni(111) surface: a density functional theory study. Yin P; Jie Y; Zhao XJ; Feng YL; Sun T; Rao DM; Pu M; Yan H Phys Chem Chem Phys; 2021 Dec; 23(48):27340-27347. PubMed ID: 34854437 [TBL] [Abstract][Full Text] [Related]
9. Potassium regulating electronic state of zirconia supported palladium catalyst and hydrogen spillover for improved acetylene hydrogenation. Xu J; Huang W; Li R; Li L; Ma J; Qi J; Ma H; Ruan M; Lu L J Colloid Interface Sci; 2024 Feb; 655():584-593. PubMed ID: 37956546 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of gas adsorption on transition metal ion-modified graphene using DFT calculations. Li J; Fan X; Chen J; Shi G; Liu X J Mol Model; 2024 Feb; 30(3):72. PubMed ID: 38366130 [TBL] [Abstract][Full Text] [Related]
11. Pure Acetylene Semihydrogenation over Ni-Cu Bimetallic Catalysts: Effect of the Cu/Ni Ratio on Catalytic Performance. Zhou S; Kang L; Zhou X; Xu Z; Zhu M Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32168927 [TBL] [Abstract][Full Text] [Related]
12. Elucidating the alkene hydrogenation reaction based on cotton textile reduced graphene oxide under the influence of external electric field: Illustration of new noble method. Amer GE; Razak FIA; Sapari S; Nur H; Setu SA Heliyon; 2023 Apr; 9(4):e14888. PubMed ID: 37025917 [TBL] [Abstract][Full Text] [Related]
13. Hydroxyl improving the activity, selectivity and stability of supported Ni single atoms for selective semi-hydrogenation. Jian M; Liu JX; Li WX Chem Sci; 2021 Aug; 12(30):10290-10298. PubMed ID: 34377416 [TBL] [Abstract][Full Text] [Related]
14. Can Contemporary Density Functional Theory Predict Energy Spans in Molecular Catalysis Accurately Enough To Be Applicable for in Silico Catalyst Design? A Computational/Experimental Case Study for the Ruthenium-Catalyzed Hydrogenation of Olefins. Rohmann K; Hölscher M; Leitner W J Am Chem Soc; 2016 Jan; 138(1):433-43. PubMed ID: 26713773 [TBL] [Abstract][Full Text] [Related]
15. Adsorption Site Regulation to Guide Atomic Design of Ni-Ga Catalysts for Acetylene Semi-Hydrogenation. Cao Y; Zhang H; Ji S; Sui Z; Jiang Z; Wang D; Zaera F; Zhou X; Duan X; Li Y Angew Chem Int Ed Engl; 2020 Jul; 59(28):11647-11652. PubMed ID: 32282112 [TBL] [Abstract][Full Text] [Related]
16. Atomically Dispersed Pd-N Wei S; Liu X; Wang C; Liu X; Zhang Q; Li Z ACS Nano; 2023 Aug; 17(15):14831-14839. PubMed ID: 37462225 [TBL] [Abstract][Full Text] [Related]
17. Machine-Learning-Assisted Catalytic Performance Predictions of Single-Atom Alloys for Acetylene Semihydrogenation. Feng H; Ding H; Wang S; Liang Y; Deng Y; Yang Y; Wei M; Zhang X ACS Appl Mater Interfaces; 2022 Jun; 14(22):25288-25296. PubMed ID: 35622997 [TBL] [Abstract][Full Text] [Related]
18. Adsorption of small hydrocarbons on the three-fold PdGa surfaces: the road to selective hydrogenation. Prinz J; Pignedoli CA; Stöckl QS; Armbrüster M; Brune H; Gröning O; Widmer R; Passerone D J Am Chem Soc; 2014 Aug; 136(33):11792-8. PubMed ID: 25068445 [TBL] [Abstract][Full Text] [Related]
19. Catalytic hydrogenation of CO Esrafili MD; Sharifi F; Dinparast L J Mol Graph Model; 2017 Oct; 77():143-152. PubMed ID: 28858642 [TBL] [Abstract][Full Text] [Related]
20. M supported on Al-defective Al Li BB; Ma HY; Wang GC Phys Chem Chem Phys; 2023 Aug; 25(32):21538-21546. PubMed ID: 37545397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]