These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 36080269)

  • 21. Didymin, a dietary citrus flavonoid exhibits anti-diabetic complications and promotes glucose uptake through the activation of PI3K/Akt signaling pathway in insulin-resistant HepG2 cells.
    Ali MY; Zaib S; Rahman MM; Jannat S; Iqbal J; Park SK; Chang MS
    Chem Biol Interact; 2019 May; 305():180-194. PubMed ID: 30928401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flavonoids and other Non-alkaloidal Constituents of Genus Erythrina: Phytochemical Review.
    Son NT; Elshamy AI
    Comb Chem High Throughput Screen; 2021; 24(1):20-58. PubMed ID: 32516097
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitory effect of saccharides and phenolic compounds from maize silks on intestinal α-glucosidases.
    Alvarado-Díaz CS; Gutiérrez-Méndez N; Mendoza-López ML; Rodríguez-Rodríguez MZ; Quintero-Ramos A; Landeros-Martínez LL; Rodríguez-Valdez LM; Rodríguez-Figueroa JC; Pérez-Vega S; Salmeron-Ochoa I; Leal-Ramos MY
    J Food Biochem; 2019 Jul; 43(7):e12896. PubMed ID: 31353692
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pleiotropic Potential of
    Studzińska-Sroka E; Bulicz M; Henkel M; Rosiak N; Paczkowska-Walendowska M; Szwajgier D; Baranowska-Wójcik E; Korybalska K; Cielecka-Piontek J
    Molecules; 2023 Dec; 29(1):. PubMed ID: 38202817
    [No Abstract]   [Full Text] [Related]  

  • 25. Spectroscopy and molecular docking analysis reveal structural specificity of flavonoids in the inhibition of α-glucosidase activity.
    Liu JL; Kong YC; Miao JY; Mei XY; Wu SY; Yan YC; Cao XY
    Int J Biol Macromol; 2020 Jun; 152():981-989. PubMed ID: 31765755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trifluoromethylated Flavonoid-Based Isoxazoles as Antidiabetic and Anti-Obesity Agents: Synthesis, In Vitro
    Algethami FK; Saidi I; Abdelhamid HN; Elamin MR; Abdulkhair BY; Chrouda A; Ben Jannet H
    Molecules; 2021 Aug; 26(17):. PubMed ID: 34500647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. α-Glucosidase Inhibition Action of Major Flavonoids Identified from Hypericum Attenuatum Choisy and Their Synergistic Effects.
    Jin DX; He JF; Zhang KQ; Luo XG; Zhang TC
    Chem Biodivers; 2021 Oct; 18(10):e2100244. PubMed ID: 34310845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical profiling, antioxidant, enzyme inhibitory and molecular modelling studies on the leaves and stem bark extracts of three African medicinal plants.
    Bibi Sadeer N; Llorent-Martínez EJ; Bene K; Fawzi Mahomoodally M; Mollica A; Ibrahime Sinan K; Stefanucci A; Ruiz-Riaguas A; Fernández-de Córdova ML; Zengin G
    J Pharm Biomed Anal; 2019 Sep; 174():19-33. PubMed ID: 31153134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The multi-targets integrated fingerprinting for screening anti-diabetic compounds from a Chinese medicine Jinqi Jiangtang Tablet.
    Chang YX; Ge AH; Donnapee S; Li J; Bai Y; Liu J; He J; Yang X; Song LJ; Zhang BL; Gao XM
    J Ethnopharmacol; 2015 Apr; 164():210-22. PubMed ID: 25698248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolated compounds from Dracaena angustifolia Roxb and acarbose synergistically/additively inhibit α-glucosidase and α-amylase: an in vitro study.
    Yi J; Zhao T; Zhang Y; Tan Y; Han X; Tang Y; Chen G
    BMC Complement Med Ther; 2022 Jul; 22(1):177. PubMed ID: 35780093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. UHPLC-MS phytochemical profiling, biological propensities and
    Saleem H; Sarfraz M; Khan KM; Anwar MA; Zengin G; Ahmad I; Khan SU; Mahomoodally MF; Ahemad N
    Drug Dev Ind Pharm; 2020 May; 46(5):861-868. PubMed ID: 32352878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective in vitro and in silico enzymes inhibitory activities of phenolic acids and flavonoids of food plants: Relations with oxidative stress.
    Yener I; Kocakaya SO; Ertas A; Erhan B; Kaplaner E; Oral EV; Yilmaz-Ozden T; Yilmaz MA; Ozturk M; Kolak U
    Food Chem; 2020 Oct; 327():127045. PubMed ID: 32464460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromatographic fingerprint analysis, antioxidant properties, and inhibition of cholinergic enzymes (acetylcholinesterase and butyrylcholinesterase) of phenolic extracts from Irvingia gabonensis (Aubry-Lecomte ex O'Rorke) Baill bark.
    Ojo OA; Ojo AB; Ajiboye BO; Oyinloye BE; Akinyemi AJ; Okesola MA; Boligon AA; de Campos MMA
    J Basic Clin Physiol Pharmacol; 2018 Mar; 29(2):217-224. PubMed ID: 29381472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structures required of flavonoids for inhibiting digestive enzymes.
    Cao H; Chen X
    Anticancer Agents Med Chem; 2012 Oct; 12(8):929-39. PubMed ID: 22292767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential of Icariin Metabolites from Epimedium koreanum Nakai as Antidiabetic Therapeutic Agents.
    Kim DH; Jung HA; Sohn HS; Kim JW; Choi JS
    Molecules; 2017 Jun; 22(6):. PubMed ID: 28608833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro anti-diabetic activity of flavonoids and pheophytins from Allophylus cominia Sw . on PTP1B, DPPIV, alpha-glucosidase and alpha-amylase enzymes.
    Semaan DG; Igoli JO; Young L; Marrero E; Gray AI; Rowan EG
    J Ethnopharmacol; 2017 May; 203():39-46. PubMed ID: 28341245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of highly potent α-glucosidase inhibitory and antioxidant constituents from Zizyphus rugosa bark: enzyme kinetic and molecular docking studies with active metabolites.
    Sichaem J; Aree T; Lugsanangarm K; Tip-Pyang S
    Pharm Biol; 2017 Dec; 55(1):1436-1441. PubMed ID: 28320255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical Composition, Antioxidant Potential and Enzymes Inhibitory Properties of Globe Artichoke By-Products.
    Rejeb IB; Dhen N; Gargouri M; Boulila A
    Chem Biodivers; 2020 Sep; 17(9):e2000073. PubMed ID: 32628807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards the Pharmacological Validation and Phytochemical Profiling of the Decoction and Maceration of
    Bibi Sadeer N; Sinan KI; Cziáky Z; Jekő J; Zengin G; Jeewon R; Abdallah HH; AlDhaheri Y; Eid AH; Mahomoodally MF
    Molecules; 2022 Mar; 27(6):. PubMed ID: 35335362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deciphering the Interactions of Bioactive Compounds in Selected Traditional Medicinal Plants against Alzheimer's Diseases via Pharmacophore Modeling, Auto-QSAR, and Molecular Docking Approaches.
    Ojo OA; Ojo AB; Okolie C; Nwakama MC; Iyobhebhe M; Evbuomwan IO; Nwonuma CO; Maimako RF; Adegboyega AE; Taiwo OA; Alsharif KF; Batiha GE
    Molecules; 2021 Apr; 26(7):. PubMed ID: 33915968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.