These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36080378)

  • 1. Recent Advances in Design and Synthesis of Diselenafulvenes, Tetraselenafulvalenes, and Their Tellurium Analogs and Application for Materials Sciences.
    Makhaeva NA; Amosova SV; Potapov VA
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic superconductors--new benchmarks.
    Williams JM; Schultz AJ; Geiser U; Carlson KD; Kini AM; Wang HH; Kwok WK; Whangbo MH; Schirber JE
    Science; 1991 Jun; 252(5012):1501-8. PubMed ID: 17834875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A general method for the synthesis of alkylenedithio- and bis(alkylenedithio)tetraselenafulvalenes.
    Takimiya K; Kataoka Y; Niihara N; Aso Y; Otsubo T
    J Org Chem; 2003 Jun; 68(13):5217-24. PubMed ID: 12816480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.
    Zhang J; Xu W; Sheng P; Zhao G; Zhu D
    Acc Chem Res; 2017 Jul; 50(7):1654-1662. PubMed ID: 28608673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superconductivity in molecular crystals induced by charge injection.
    Schön JH; Kloc C; Batlogg B
    Nature; 2000 Aug; 406(6797):702-4. PubMed ID: 10963589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CSe2-free synthesis of [1,3]diselenole-2-thione and its application to syntheses of iodinated tetraselenafulvalenes (TSeFs).
    Imakubo T; Shirahata T
    Chem Commun (Camb); 2003 Aug; (15):1940-1. PubMed ID: 12932043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical Conductivity-Relay between Organic Charge-Transfer and Radical Salts toward Conductive Additive-Free Rechargeable Battery.
    Fujihara Y; Kobayashi H; Takaishi S; Tomai T; Yamashita M; Honma I
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):25748-25755. PubMed ID: 32412238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The physics of organic superconductors.
    Jérome D
    Science; 1991 Jun; 252(5012):1509-14. PubMed ID: 17834876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on molecular conductors: from organic semiconductors to molecular metals and superconductors.
    Kobayashi H; Kobayashi A; Tajima H
    Chem Asian J; 2011 Jul; 6(7):1688-704. PubMed ID: 21612013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intercalated Iron Chalcogenides: Phase Separation Phenomena and Superconducting Properties.
    Krzton-Maziopa A
    Front Chem; 2021; 9():640361. PubMed ID: 34239856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selenium- and tellurium-containing fluorescent molecular probes for the detection of biologically important analytes.
    Manjare ST; Kim Y; Churchill DG
    Acc Chem Res; 2014 Oct; 47(10):2985-98. PubMed ID: 25248146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound.
    Coronado E; Galán-Mascarós JR; Gómez-García CJ; Laukhin V
    Nature; 2000 Nov; 408(6811):447-9. PubMed ID: 11100721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frontiers of organic conductors and superconductors.
    Saito G; Yoshida Y
    Top Curr Chem; 2012; 312():67-126. PubMed ID: 21952839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale.
    Cornil J; Verlaak S; Martinelli N; Mityashin A; Olivier Y; Van Regemorter T; D'Avino G; Muccioli L; Zannoni C; Castet F; Beljonne D; Heremans P
    Acc Chem Res; 2013 Feb; 46(2):434-43. PubMed ID: 23140088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances on triptycene derivatives in supramolecular and materials chemistry.
    Gu MJ; Wang YF; Han Y; Chen CF
    Org Biomol Chem; 2021 Dec; 19(46):10047-10067. PubMed ID: 34751696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroactive Ionenes: Efficient Interlayer Materials in Organic Photovoltaics.
    Liu Y; Russell TP
    Acc Chem Res; 2022 Apr; 55(8):1097-1108. PubMed ID: 35188380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. n-Type Organic and Polymeric Semiconductors Based on Bithiophene Imide Derivatives.
    Feng K; Guo H; Sun H; Guo X
    Acc Chem Res; 2021 Oct; 54(20):3804-3817. PubMed ID: 34617720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges.
    Khan I; Ibrar A; Zaib S
    Top Curr Chem (Cham); 2021 Jan; 379(1):3. PubMed ID: 33398642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of heterocyclic analogs of isoflavone and homoisoflavone based on 3-formylchromone.
    Shatokhin SS; Tuskaev VA; Gagieva SC; Oganesyan ÉT
    Russ Chem Bull; 2021; 70(6):1011-1045. PubMed ID: 34305378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.