These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36080466)

  • 1. Environmentally Safe Photodynamic Control of
    Lima AR; Silva CM; da Silva LM; Machulek A; de Souza AP; de Oliveira KT; Souza LM; Inada NM; Bagnato VS; Oliveira SL; Caires ARL
    Molecules; 2022 Sep; 27(17):. PubMed ID: 36080466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental safety and mode of action of a novel curcumin-based photolarvicide.
    Venturini FP; de Souza LM; Garbuio M; Inada NM; de Souza JP; Kurachi C; de Oliveira KT; Bagnato VS
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):29204-29217. PubMed ID: 32430723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formulations of curcumin and d-mannitol as a photolarvicide against Aedes aegypti larvae: Sublethal photolarvicidal action, toxicity, residual evaluation, and small-scale field trial.
    Garbuio M; Dias LD; de Souza LM; Corrêa TQ; Mezzacappo NF; Blanco KC; de Oliveira KT; Inada NM; Bagnato VS
    Photodiagnosis Photodyn Ther; 2022 Jun; 38():102740. PubMed ID: 35101624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Curcumin/d-mannitol as photolarvicide: induced delay in larval development time, changes in sex ratio and reduced longevity of Aedes aegypti.
    Mezzacappo NF; de Souza LM; Inada NM; Dias LD; Garbuio M; Venturini FP; Corrêa TQ; Moura L; Blanco KC; de Oliveira KT; Bagnato VS
    Pest Manag Sci; 2021 May; 77(5):2530-2538. PubMed ID: 33470514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curcumin in formulations against Aedes aegypti: Mode of action, photolarvicidal and ovicidal activity.
    de Souza LM; Venturini FP; Inada NM; Iermak I; Garbuio M; Mezzacappo NF; de Oliveira KT; Bagnato VS
    Photodiagnosis Photodyn Ther; 2020 Sep; 31():101840. PubMed ID: 32485405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Eosin-Methylene Blue as a Photosensitizer for Larval Control of
    Lima AR; Silva CM; Caires CSA; Prado ED; Rocha LRP; Cabrini I; Arruda EJ; Oliveira SL; Caires ARL
    Insects; 2018 Aug; 9(3):. PubMed ID: 30200177
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico.
    Arredondo-Jiménez JI; Valdez-Delgado KM
    Med Vet Entomol; 2006 Dec; 20(4):377-87. PubMed ID: 17199749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory bioefficacy of nine commercial formulations of temephos against larvae of Aedes aegypti (L.), Aedes albopictus Skuse and Culex quinquefasciatus Say.
    Chen CD; Lee HL; Chan CK; Ang CL; Azahari AH; Lau KW; Sofian-Azirun M
    Trop Biomed; 2009 Dec; 26(3):360-5. PubMed ID: 20237452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of wMel and wAlbB Wolbachia infections in Aedes aegypti Puducherry (Indian) strains to heat stress during larval development.
    Gunasekaran K; Sadanandane C; Panneer D; Kumar A; Rahi M; Dinesh S; Vijayakumar B; Krishnaraja M; Subbarao SK; Jambulingam P
    Parasit Vectors; 2022 Jun; 15(1):221. PubMed ID: 35729601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicological effects of chemical constituents from Piper against the environmental burden Aedes aegypti Liston and their impact on non-target toxicity evaluation against biomonitoring aquatic insects.
    Vasantha-Srinivasan P; Thanigaivel A; Edwin ES; Ponsankar A; Senthil-Nathan S; Selin-Rani S; Kalaivani K; Hunter WB; Duraipandiyan V; Al-Dhabi NA
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):10434-10446. PubMed ID: 28852982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-lasting effects of a Bacillus thuringiensis serovar israelensis experimental tablet formulation for Aedes aegypti (Diptera: Culicidae) control.
    Armengol G; Hernandez J; Velez JG; Orduz S
    J Econ Entomol; 2006 Oct; 99(5):1590-5. PubMed ID: 17066787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector, Aedes aegypti, in an aquatic environment treated with mosquitocidal nanoparticles.
    Murugan K; Priyanka V; Dinesh D; Madhiyazhagan P; Panneerselvam C; Subramaniam J; Suresh U; Chandramohan B; Roni M; Nicoletti M; Alarfaj AA; Higuchi A; Munusamy MA; Khater HF; Messing RH; Benelli G
    Parasitol Res; 2015 Oct; 114(10):3601-10. PubMed ID: 26091763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Larvicidal activity of
    Marques AM; Velozo LS; Carvalho MA; Serdeiro MT; Honório NA; Kaplan MA; Maleck M
    J Vector Borne Dis; 2017; 54(1):61-68. PubMed ID: 28352047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Larvicidal and pupicidal activities of essential oils from Zingiberaceae plants against Aedes aegypti (Linn.) and Culex quinquefasciatus say mosquitoes.
    Phukerd U; Soonwera M
    Southeast Asian J Trop Med Public Health; 2013 Sep; 44(5):761-71. PubMed ID: 24437311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel, meso-substituted cationic porphyrin molecule for photo-mediated larval control of the dengue vector Aedes aegypti.
    Lucantoni L; Magaraggia M; Lupidi G; Ouedraogo RK; Coppellotti O; Esposito F; Fabris C; Jori G; Habluetzel A
    PLoS Negl Trop Dis; 2011 Dec; 5(12):e1434. PubMed ID: 22206031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laboratory evaluation of aqueous leaf extract of Tephrosia vogelii against larvae of Aedes albopictus (Diptera: Culicidae) and non-target aquatic organisms.
    Li W; Huang C; Wang K; Fu J; Cheng D; Zhang Z
    Acta Trop; 2015 Jun; 146():36-41. PubMed ID: 25771114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecotoxicity and environmental risk assessment of larvicides used in the control of Aedes aegypti to Daphnia magna (Crustacea, Cladocera).
    Abe FR; Coleone AC; Machado AA; Gonçalves Machado-Neto J
    J Toxicol Environ Health A; 2014; 77(1-3):37-45. PubMed ID: 24555645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residual effects of TMOF-Bti formulations against 1(st) instar Aedes aegypti Linnaeus larvae outside laboratory.
    Saiful AN; Lau MS; Sulaiman S; Hidayatulfathi O
    Asian Pac J Trop Biomed; 2012 Apr; 2(4):315-9. PubMed ID: 23569922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-induced and phytomediated synthesis of silver nanoparticles using Derris trifoliata leaf extract and its larvicidal activity against Aedes aegypti.
    Kumar VA; Ammani K; Jobina R; Subhaswaraj P; Siddhardha B
    J Photochem Photobiol B; 2017 Jun; 171():1-8. PubMed ID: 28460330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weekly variation on susceptibility status of Aedes mosquitoes against temephos in Selangor, Malaysia.
    Chen CD; Nazni WA; Lee HL; Sofian-Azirun M
    Trop Biomed; 2005 Dec; 22(2):195-206. PubMed ID: 16883288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.