These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 36080498)
1. New Chemicals Suppressing SARS-CoV-2 Replication in Cell Culture. Sulimov A; Ilin I; Kutov D; Shikhaliev K; Shcherbakov D; Pyankov O; Stolpovskaya N; Medvedeva S; Sulimov V Molecules; 2022 Sep; 27(17):. PubMed ID: 36080498 [TBL] [Abstract][Full Text] [Related]
2. [Development of antiviral drugs based on inhibitors of the SARS-COV-2 main protease]. Sulimov AV; Shikhaliev KS; Pyankov OV; Shcherbakov DN; Chirkova VY; Ilin IS; Kutov DC; Tashchilova AS; Krysin MY; Krylskiy DV; Stolpovskaya NV; Volosnikova EA; Belenkaya SV; Sulimov VB Biomed Khim; 2021 May; 67(3):259-267. PubMed ID: 34142533 [TBL] [Abstract][Full Text] [Related]
3. Structure-based virtual screening, in silico docking, ADME properties prediction and molecular dynamics studies for the identification of potential inhibitors against SARS-CoV-2 M Mohan A; Rendine N; Mohammed MKS; Jeeva A; Ji HF; Talluri VR Mol Divers; 2022 Jun; 26(3):1645-1661. PubMed ID: 34480682 [TBL] [Abstract][Full Text] [Related]
4. In silico evaluation of Philippine Natural Products against SARS-CoV-2 Main Protease. Cheng AJT; Macalino SJY; Billones JB; Balolong MP; Murao LAE; Carrillo MCO J Mol Model; 2022 Oct; 28(11):345. PubMed ID: 36205801 [TBL] [Abstract][Full Text] [Related]
5. In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. Choudhary MI; Shaikh M; Tul-Wahab A; Ur-Rahman A PLoS One; 2020; 15(7):e0235030. PubMed ID: 32706783 [TBL] [Abstract][Full Text] [Related]
6. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. Kumar Y; Singh H; Patel CN J Infect Public Health; 2020 Sep; 13(9):1210-1223. PubMed ID: 32561274 [TBL] [Abstract][Full Text] [Related]
8. Exploration of Novel Lichen Compounds as Inhibitors of SARS-CoV-2 Mpro: Ligand-Based Design, Molecular Dynamics, and ADMET Analyses. Gupta A; Sahu N; Singh AP; Singh VK; Singh SC; Upadhye VJ; Mathew AT; Kumar R; Sinha RP Appl Biochem Biotechnol; 2022 Dec; 194(12):6386-6406. PubMed ID: 35921031 [TBL] [Abstract][Full Text] [Related]
9. Discovery of M Protease Inhibitors Encoded by SARS-CoV-2. Hung HC; Ke YY; Huang SY; Huang PN; Kung YA; Chang TY; Yen KJ; Peng TT; Chang SE; Huang CT; Tsai YR; Wu SH; Lee SJ; Lin JH; Liu BS; Sung WC; Shih SR; Chen CT; Hsu JT Antimicrob Agents Chemother; 2020 Aug; 64(9):. PubMed ID: 32669265 [TBL] [Abstract][Full Text] [Related]
10. Solanaceae Family Phytochemicals as Inhibitors of 3C-Like Protease of SARS-CoV-2: An In Silico Analysis. Mahmood RA; Hasan A; Rahmatullah M; Paul AK; Jahan R; Jannat K; Bondhon TA; Mahboob T; Nissapatorn V; de Lourdes Pereira M; Paul TK; Rumi OH; Wiart C; Wilairatana P Molecules; 2022 Jul; 27(15):. PubMed ID: 35897915 [TBL] [Abstract][Full Text] [Related]
11. In Silico Insights into the SARS CoV-2 Main Protease Suggest NADH Endogenous Defences in the Control of the Pandemic Coronavirus Infection. Martorana A; Gentile C; Lauria A Viruses; 2020 Jul; 12(8):. PubMed ID: 32722574 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, antimicrobial, molecular docking and molecular dynamics studies of lauroyl thymidine analogs against SARS-CoV-2: POM study and identification of the pharmacophore sites. Anowar Hosen M; Sultana Munia N; Al-Ghorbani M; Baashen M; Almalki FA; Ben Hadda T; Ali F; Mahmud S; Abu Saleh M; Laaroussi H; Kawsar SMA Bioorg Chem; 2022 Aug; 125():105850. PubMed ID: 35533581 [TBL] [Abstract][Full Text] [Related]
13. In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus. Eleftheriou P; Amanatidou D; Petrou A; Geronikaki A Molecules; 2020 May; 25(11):. PubMed ID: 32485894 [TBL] [Abstract][Full Text] [Related]
14. Allosteric inhibitors of the main protease of SARS-CoV-2. Samrat SK; Xu J; Xie X; Gianti E; Chen H; Zou J; Pattis JG; Elokely K; Lee H; Li Z; Klein ML; Shi PY; Zhou J; Li H Antiviral Res; 2022 Sep; 205():105381. PubMed ID: 35835291 [TBL] [Abstract][Full Text] [Related]
15. Finding potent inhibitors against SARS-CoV-2 main protease through virtual screening, ADMET, and molecular dynamics simulation studies. Roy R; Sk MF; Jonniya NA; Poddar S; Kar P J Biomol Struct Dyn; 2022 Sep; 40(14):6556-6568. PubMed ID: 33682642 [TBL] [Abstract][Full Text] [Related]
16. A Study of Drug Repurposing to Identify SARS-CoV-2 Main Protease (3CLpro) Inhibitors. Jo S; Signorile L; Kim S; Kim MS; Huertas O; Insa R; Reig N; Shin DH Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742913 [TBL] [Abstract][Full Text] [Related]
17. Some Flavolignans as Potent Sars-Cov-2 Inhibitors Cetin A Curr Comput Aided Drug Des; 2022; 18(5):337-346. PubMed ID: 35975852 [TBL] [Abstract][Full Text] [Related]
18. Integrated bioinformatics-cheminformatics approach toward locating pseudo-potential antiviral marine alkaloids against SARS-CoV-2-Mpro. Swain SS; Singh SR; Sahoo A; Panda PK; Hussain T; Pati S Proteins; 2022 Sep; 90(9):1617-1633. PubMed ID: 35384056 [TBL] [Abstract][Full Text] [Related]
19. Structure-based lead optimization of herbal medicine rutin for inhibiting SARS-CoV-2's main protease. Huynh T; Wang H; Luan B Phys Chem Chem Phys; 2020 Nov; 22(43):25335-25343. PubMed ID: 33140777 [TBL] [Abstract][Full Text] [Related]
20. Targeting SARS-CoV-2 main protease: structure based virtual screening, in silico ADMET studies and molecular dynamics simulation for identification of potential inhibitors. Uniyal A; Mahapatra MK; Tiwari V; Sandhir R; Kumar R J Biomol Struct Dyn; 2022 May; 40(8):3609-3625. PubMed ID: 33226303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]