These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 36080568)
41. Novel ionic polymer-metal composite actuator based on sulfonated poly(1,4-phenylene ether-ether-sulfone) and polyvinylidene fluoride/sulfonated graphene oxide. Khan A; Jain RK; Ghosh B; Inamuddin ; Asiri AM RSC Adv; 2018 Jul; 8(45):25423-25435. PubMed ID: 35539767 [TBL] [Abstract][Full Text] [Related]
42. Sulphonated-graphene oxide nanocomposite membranes with PVA-ZnO nanostructures and mechanized agitation-enhanced pt coating for soft robotics bending actuator. Mustafa SK; Alessa AH; S Alatawi IS; Hosny Al Dalaeen J; Islam M; Ahamed MI Sci Rep; 2024 Oct; 14(1):23059. PubMed ID: 39366978 [TBL] [Abstract][Full Text] [Related]
43. Single-Walled Carbon Nanotube-Reinforced PEDOT: PSS Hybrid Electrodes for High-Performance Ionic Electroactive Polymer Actuator. Tao H; Hu G; Lu S; Li B; Zhang Y; Ru J Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793535 [TBL] [Abstract][Full Text] [Related]
45. Humidity- and light-driven actuators based on carbon nanotube-coated paper and polymer composite. Zhou P; Chen L; Yao L; Weng M; Zhang W Nanoscale; 2018 May; 10(18):8422-8427. PubMed ID: 29637961 [TBL] [Abstract][Full Text] [Related]
46. Fabrication and characteristics of a multilayered ionic polymer metal composite based on Nafion/tetraethyl orthosilicate and Nafion/MCNT nanocomposites. He QS; Yu M; Ding Y; Dai ZD J Nanosci Nanotechnol; 2014 Oct; 14(10):7445-50. PubMed ID: 25942807 [TBL] [Abstract][Full Text] [Related]
47. Influence of electrode surface roughness and steric effects on the nonlinear electromechanical behavior of ionic polymer metal composites. Porfiri M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041503. PubMed ID: 19518238 [TBL] [Abstract][Full Text] [Related]
48. Formation and Characterization of Dendritic Interfacial Electrodes inside an Ionomer. Wang Y; Liu J; Zhu Y; Zhu D; Chen H ACS Appl Mater Interfaces; 2017 Sep; 9(36):30258-30262. PubMed ID: 28841281 [TBL] [Abstract][Full Text] [Related]
49. Carbon-Based Nanomaterials Electrodes of Ionic Soft Actuators: From Initial 1D Structure to 3D Composite Structure for Flexible Intelligent Devices. Wang B; Huang P; Li B; Wu Z; Xing Y; Zhu J; Liu L Small; 2023 Dec; 19(50):e2304246. PubMed ID: 37635123 [TBL] [Abstract][Full Text] [Related]
50. Recent Progress in Development and Applications of Ionic Polymer-Metal Composite. Park SW; Kim SJ; Park SH; Lee J; Kim H; Kim MK Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014211 [TBL] [Abstract][Full Text] [Related]
51. An Antifatigue Liquid Metal Composite Electrode Ionic Polymer-Metal Composite Artificial Muscle with Excellent Electromechanical Properties. He Z; Jiao S; Wang Z; Wang Y; Yang M; Zhang Y; Liu Y; Wu Y; Shang J; Chen Q; Li RW ACS Appl Mater Interfaces; 2022 Mar; 14(12):14630-14639. PubMed ID: 35290011 [TBL] [Abstract][Full Text] [Related]
52. Design of Laboratory Stand for Displacement Measurement of IPMC Actuators. Koślik K; Kowol P; Brociek R; Wajda A; Lo Sciuto G Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772310 [TBL] [Abstract][Full Text] [Related]
53. Biomimetic robotic Venus flytrap (Dionaea muscipula Ellis) made with ionic polymer metal composites. Shahinpoor M Bioinspir Biomim; 2011 Dec; 6(4):046004. PubMed ID: 21992999 [TBL] [Abstract][Full Text] [Related]
54. 3D Printing of Layered Structures of Metal-Ionic Polymers: Recent Progress, Challenges and Opportunities. Martinelli A; Nitti A; Po R; Pasini D Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570031 [TBL] [Abstract][Full Text] [Related]
55. Understanding the Thermal Properties of Precursor-Ionomers to Optimize Fabrication Processes for Ionic Polymer-Metal Composites (IPMCs). Trabia S; Choi K; Olsen Z; Hwang T; Nam JD; Kim KJ Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29693584 [TBL] [Abstract][Full Text] [Related]
56. Deterministic Role of Carbon Nanotube-Substrate Coupling for Ultrahigh Actuation in Bilayer Electrothermal Actuators. Ghosh R; Telpande S; Gowda P; Reddy SK; Kumar P; Misra A ACS Appl Mater Interfaces; 2020 Jul; 12(26):29959-29970. PubMed ID: 32500702 [TBL] [Abstract][Full Text] [Related]
57. Effects of membrane thickness on the performance of ionic polymer-metal composite actuators. Oh C; Kim S; Kim H; Park G; Kim J; Ryu J; Li P; Lee S; No K; Hong S RSC Adv; 2019 May; 9(26):14621-14626. PubMed ID: 35516294 [TBL] [Abstract][Full Text] [Related]
58. The Effects of Dimensions on the Deformation Sensing Performance of Ionic Polymer-Metal Composites. Wang J; Wang Y; Zhu Z; Wang J; He Q; Luo M Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31067676 [TBL] [Abstract][Full Text] [Related]
59. Novel nanocomposite actuator based on sulfonated poly(styrene-b-ethylene-co-butylene-b-styrene) polymer. Jung JY; Oh IK J Nanosci Nanotechnol; 2007 Nov; 7(11):3740-3. PubMed ID: 18047049 [TBL] [Abstract][Full Text] [Related]
60. Wet-Spinning Carbon Nanotube/Shape Memory Polymer Composite Fibers with High Actuation Stress and Predesigned Shape Change. Li M; Chen K; Zhang D; Ye Z; Yang Z; Wang Q; Jiang Z; Zhang Y; Shang Y; Cao A Adv Sci (Weinh); 2024 Oct; 11(38):e2404913. PubMed ID: 39119888 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]