These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36080568)

  • 61. Tunable actuation behavior of ionic polymer metal composite utilizing carboxylated carbon nanotube-doped Nafion matrix.
    Ru J; Zhu Z; Wang Y; Chen H; Li D
    RSC Adv; 2018 Jan; 8(6):3090-3094. PubMed ID: 35541185
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Advances in Polymeric Materials for Electromechanical Devices.
    White BT; Long TE
    Macromol Rapid Commun; 2019 Jan; 40(1):e1800521. PubMed ID: 30357999
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications.
    Feng GH; Huang WL
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():241-9. PubMed ID: 25491826
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Optimum condition of anisotropic plasma etching for improving bending properties of ionic polymer-metal composites.
    Choi NJ; Lee HK; Jung S; Park KH
    J Nanosci Nanotechnol; 2010 May; 10(5):3299-303. PubMed ID: 20358943
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Development of Paper Actuators Based on Carbon-Nanotube-Composite Paper.
    Ampo T; Oya T
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33800351
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Structure-Property Relationships in Hybrid Cellulose Nanofibrils/Nafion-Based Ionic Polymer-Metal Composites.
    Noonan C; Tajvidi M; Tayeb AH; Shahinpoor M; Tabatabaie SE
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003420
    [TBL] [Abstract][Full Text] [Related]  

  • 67. MXene Enhanced the Electromechanical Performance of a Nafion-Based Actuator.
    Tang X; Zhou Z; Jiang Y; Wang Q; Sun Q; Zu L; Gao X; Lian H; Cao M; Cui X
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454527
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Hierarchical carbon nanotube composite yarn muscles.
    Song Y; Zhou S; Jin K; Qiao J; Li D; Xu C; Hu D; Di J; Li M; Zhang Z; Li Q
    Nanoscale; 2018 Feb; 10(8):4077-4084. PubMed ID: 29431840
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Experimental estimate of viscoelastic properties for ionic polymer-metal composites.
    Yagasaki K; Tamagawa H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):052801. PubMed ID: 15600669
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Preparation of gradually componential metal electrode on solution-casted Nafion membrane.
    Chung RJ; Chin TS; Chen LC; Hsieh MF
    Biomol Eng; 2007 Nov; 24(5):434-7. PubMed ID: 17827061
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cellulose-Multiwall Carbon Nanotube Fiber Actuator Behavior in Aqueous and Organic Electrolyte.
    Elhi F; Peikolainen AL; Kiefer R; Tamm T
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32707652
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A large-deformation phase transition electrothermal actuator based on carbon nanotube-elastomer composites.
    Zhou Z; Li Q; Chen L; Liu C; Fan S
    J Mater Chem B; 2016 Feb; 4(7):1228-1234. PubMed ID: 32262978
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Bias-dependent model of the electrical impedance of ionic polymer-metal composites.
    Cha Y; Porfiri M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022403. PubMed ID: 23496522
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Size of liquid metal particles influences actuation properties of a liquid crystal elastomer composite.
    Ford MJ; Palaniswamy M; Ambulo CP; Ware TH; Majidi C
    Soft Matter; 2020 Jul; 16(25):5878-5885. PubMed ID: 32412038
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Electrical impedance controls mechanical sensing in ionic polymer metal composites.
    Cha Y; Cellini F; Porfiri M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062603. PubMed ID: 24483477
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An artificial muscle actuator for biomimetic underwater propulsors.
    Yim W; Lee J; Kim KJ
    Bioinspir Biomim; 2007 Jun; 2(2):S31-41. PubMed ID: 17671327
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sulfonated poly(styrene-b-ethylene-co-butylene-b-styrene) and fullerene composites for ionic polymer actuators.
    Wang XL; Oh IK
    J Nanosci Nanotechnol; 2010 May; 10(5):3203-6. PubMed ID: 20358922
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Carbon Nanotube Yarn for Fiber-Shaped Electrical Sensors, Actuators, and Energy Storage for Smart Systems.
    Jang Y; Kim SM; Spinks GM; Kim SJ
    Adv Mater; 2020 Feb; 32(5):e1902670. PubMed ID: 31403227
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Solvent Sorption-Induced Actuation of Composites Based on a Polymer of Intrinsic Microporosity.
    Polak-Kraśna K; Tian M; Rochat S; Gathercole N; Yuan C; Hao Z; Pan M; Burrows AD; Mays TJ; Bowen CR
    ACS Appl Polym Mater; 2021 Feb; 3(2):920-928. PubMed ID: 34476398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.