These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 36080639)
1. Effect of Interlaminar Toughness on the Residual Compressive Capacity of Carbon Fiber Laminates with Different Types of Delamination. Zhang Y; Cai D; Hu Y; Zhang N; Peng J Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080639 [TBL] [Abstract][Full Text] [Related]
2. Identification of Multiple Mechanical Properties of Laminates from a Single Compressive Test. Gao B; Yan H; Wang B; Yang Q; Meng S; Huo Y Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454642 [TBL] [Abstract][Full Text] [Related]
3. Improvement of the mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves. Ning H; Li Y; Hu N; Cao Y; Yan C; Azuma T; Peng X; Wu L; Li J; Li L Sci Technol Adv Mater; 2014 Jun; 15(3):035004. PubMed ID: 27877680 [TBL] [Abstract][Full Text] [Related]
4. Experimental and Numerical Assessment of Fibre Bridging Toughening Effects on the Compressive Behaviour of Delaminated Composite Plates. Riccio A; Russo A; Sellitto A; Toscano C; Alfano D; Zarrelli M Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32138254 [TBL] [Abstract][Full Text] [Related]
5. Synergistic Delamination Toughening of Glass Fiber-Aluminum Laminates by Surface Treatment and Graphene Oxide Interleaf. Wu X; Ning H; Liu Y; Hu N; Liu F; Wang S; Huang K; Jiao Y; Weng S; Liu Q; Wu L Nanoscale Res Lett; 2020 Apr; 15(1):74. PubMed ID: 32266671 [TBL] [Abstract][Full Text] [Related]
6. Interlaminar Fracture Behavior of Carbon Fiber/Polyimide Composites Toughened by Interleaving Thermoplastic Polyimide Fiber Veils. Lan B; Liu Y; Mo S; He M; Zhai L; Fan L Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065579 [TBL] [Abstract][Full Text] [Related]
7. Improved Interlaminar Fracture Toughness and Electrical Conductivity of CFRPs with Non-Woven Carbon Tissue Interleaves Composed of Fibers with Different Lengths. Xu F; Yang B; Feng L; Huang D; Xia M Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32260088 [TBL] [Abstract][Full Text] [Related]
9. J-Integral Experimental Reduction Reveals Fracture Toughness Improvements in Thin-Ply Carbon Fiber Laminates with Aligned Carbon Nanotube Interlaminar Reinforcement. Furtado C; Kopp R; Ni X; Sarrado C; Kalfon-Cohen E; Wardle BL; Camanho PP ACS Appl Mater Interfaces; 2024 Apr; 16(16):20980-9. PubMed ID: 38624137 [TBL] [Abstract][Full Text] [Related]
10. Hybridization Effect on Interlaminar Bond Strength, Flexural Properties, and Hardness of Carbon-Flax Fiber Thermoplastic Bio-Composites. Bahrami M; Del Real JC; Mehdikhani M; Butenegro JA; Abenojar J; Martínez MÁ Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139872 [TBL] [Abstract][Full Text] [Related]
11. On the Residual Stresses and Fracture Toughness of Glass/Carbon Epoxy Composites. Umarfarooq MA; Gouda PSS; Banapurmath NR; Kittur MI; Khan T; Badruddin IA; Kamangar S; Hussien M Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295200 [TBL] [Abstract][Full Text] [Related]
12. Effect of Plasma-Treatment of Interleaved Thermoplastic Films on Delamination in Interlayer Fibre Hybrid Composite Laminates. Marino SG; Mayer F; Bismarck A; Czél G Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33260510 [TBL] [Abstract][Full Text] [Related]
13. Low-Velocity Impact Resistance of Al/Gf/PP Laminates with Different Interface Performance. Lin Y; Li H; Zhang Z; Tao J Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960968 [TBL] [Abstract][Full Text] [Related]
14. Improving Interlaminar Fracture Toughness and Impact Performance of Carbon Fiber/Epoxy Laminated Composite by Using Thermoplastic Fibers. Chen L; Wu LW; Jiang Q; Tian D; Zhong Z; Wang Y; Fu HJ Molecules; 2019 Sep; 24(18):. PubMed ID: 31527461 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of Interlaminar Strengthening and Toughening of Al/CFRP/Al Composite Laminates. Wang J; Qiao T; Wang A; Li X; Wang T Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676297 [TBL] [Abstract][Full Text] [Related]
16. Improvement in Tensile Quasi-Static and Fatigue Properties of Carbon Fiber-Reinforced Epoxy Laminates with Matrices Modified by Carbon Nanotubes and Graphene Nanoplatelets Hybrid Nanofillers. Jen YM; Huang YC Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947805 [TBL] [Abstract][Full Text] [Related]
17. Numerical and Experimental Analysis of the Mode I Interlaminar Fracture Toughness in Multidirectional 3D-Printed Thermoplastic Composites Reinforced with Continuous Carbon Fiber. Santos JD; Guerrero JM; Blanco N; Fajardo JI; Paltán CA Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242978 [TBL] [Abstract][Full Text] [Related]
18. Influence of Interfacial Interaction and Composition on Fracture Toughness and Impact Properties of Carbon Fiber-Reinforced Polyethersulfone. Torokhov VG; Chukov DI; Tcherdyntsev VV; Stepashkin AA; Zadorozhnyy MY Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543465 [TBL] [Abstract][Full Text] [Related]
19. Improved Interlaminar Properties of Glass Fiber/Epoxy Laminates by the Synergic Modification of Soft and Rigid Particles. Liu J; Tian S; Ren J; Huang J; Luo L; Du B; Zhang T Materials (Basel); 2023 Oct; 16(19):. PubMed ID: 37834749 [TBL] [Abstract][Full Text] [Related]
20. A Review of Electrospun Nanofiber Interleaves for Interlaminar Toughening of Composite Laminates. Mahato B; Lomov SV; Shiverskii A; Owais M; Abaimov SG Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]