BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36080657)

  • 1. A Fast and Easy Probe Based on CMC/Eu (Ⅲ) Nanocomposites to Detect Acrylamide in Different Food Simulants Migrating from Food-Contacting Paper Materials.
    Chen J; Ye J; Zhang M; Xiong J
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence probe based carboxymethyl cellulose/Tb(III) nanocomposites for detection of Mn
    Ye J; Zhang M; Xiong J
    Carbohydr Polym; 2018 Jun; 190():156-161. PubMed ID: 29628233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of an HPLC method with fluorescence detection for the determination of fluorescent whitening agents migrating from plastic beverage cups.
    Alberto Lopes JF; Tsochatzis ED; Emons H; Hoekstra E
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Jul; 35(7):1438-1446. PubMed ID: 29701534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomedical rationale for acrylamide regulation and methods of detection.
    Cantrell MS; McDougal OM
    Compr Rev Food Sci Food Saf; 2021 Mar; 20(2):2176-2205. PubMed ID: 33484492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A molecularly imprinted polymer placed on the surface of graphene oxide and doped with Mn(II)-doped ZnS quantum dots for selective fluorometric determination of acrylamide.
    Liu Y; Hu X; Bai L; Jiang Y; Qiu J; Meng M; Liu Z; Ni L
    Mikrochim Acta; 2017 Dec; 185(1):48. PubMed ID: 29594547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A portable Eu-MOF-loaded paper-based probe integrated with smartphone for the visual and on-site detection of Cr
    Zhao B; Liu X; Cheng Z; Liu X; Zhang X; Feng X
    Talanta; 2024 Jun; 278():126462. PubMed ID: 38917552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent garlic-capped Ag nanoparticles as dual sensors for the detection of acetone and acrylamide.
    El-Naka MA; El-Dissouky A; Ali GY; Ebrahim S; Shokry A
    RSC Adv; 2022 Nov; 12(52):34095-34106. PubMed ID: 36505681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New Cellulose-Based Fluorescent Probe for Specific and Sensitive Detection of Cu
    Zhao F; Meng Z; Wang Z; Yang Y
    Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HPLC method for determining ethylenediamine migration from epoxy-amine food packaging coatings into EU food simulants.
    Paz-Pino B; Pérez-Lamela C; Cancho-Grande B; Simal-Gándara J
    Food Addit Contam; 2003 Mar; 20(3):308-12. PubMed ID: 12623657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strawberry-like SiO
    Wu L; Zhang W; Liu C; Foda MF; Zhu Y
    Food Chem; 2020 Oct; 328():127106. PubMed ID: 32485584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Portable ratiometric probe based on the use of europium(III) coordination polymers doped with carbon dots for visual fluorometric determination of oxytetracycline.
    Chen L; Xu H; Wang L; Li Y; Tian X
    Mikrochim Acta; 2020 Jan; 187(2):125. PubMed ID: 31938900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of europium(III) complex fluorescent probe for hydrogen sulfide detection and its application in water samples.
    Cai W; Chen X; Xie L; Yu Y; Liu G; Fan C; Pu S
    Luminescence; 2023 Nov; ():. PubMed ID: 37975337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Food and Beverage Ingredients Induce the Formation of Silver Nanoparticles in Products Stored within Nanotechnology-Enabled Packaging.
    Yang T; Paulose T; Redan BW; Mabon JC; Duncan TV
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1398-1412. PubMed ID: 33398990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence determination of acrylamide in heat-processed foods.
    Liu C; Luo F; Chen D; Qiu B; Tang X; Ke H; Chen X
    Talanta; 2014 Jun; 123():95-100. PubMed ID: 24725869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen, sulfur, phosphorus, and chlorine co-doped carbon nanodots as an "off-on" fluorescent probe for sequential detection of curcumin and europium ion and luxuriant applications.
    Hao Y; Wang H; Wang Z; Dong W; Hu Q; Shuang S; Dong C; Gong X
    Mikrochim Acta; 2021 Jan; 188(1):16. PubMed ID: 33399925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of ratiometric fluorescence MIPs probe for selective detection of tetracycline based on passion fruit peel carbon dots and europium.
    Sun X; Jiang M; Chen L; Niu N
    Mikrochim Acta; 2021 Aug; 188(9):297. PubMed ID: 34401956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of diglycolic acid in food packaging, over the counter products, direct additive carboxymethyl cellulose, and retail foods.
    Young W; DeJager L
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Dec; 35(12):2309-2314. PubMed ID: 30381003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of acrylamide in food using a UPLC-MS/MS method: results of the official control and dietary exposure assessment in Cyprus.
    Kafouris D; Stavroulakis G; Christofidou M; Iakovou X; Christou E; Paikousis L; Christodoulidou M; Ioannou-Kakouri E; Yiannopoulos S
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Oct; 35(10):1928-1939. PubMed ID: 30148685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Origami Paper-Based Analytical Device for Rapid and Sensitive Analysis of Acrylamide in Foods.
    Yan Y; Zhao D; Li W; Li X; Chang Y; Zhang Q; Liu M
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acrylamide in Caribbean foods - residual levels and their relation to reducing sugar and asparagine content.
    Bent GA; Maragh P; Dasgupta T
    Food Chem; 2012 Jul; 133(2):451-7. PubMed ID: 25683419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.