These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36080664)

  • 1. A Three-Parameter Weibull Distribution Method to Determine the Fracture Property of PMMA Bone Cement.
    Li L; Cao H; Guan J; He S; Niu L; Liu H
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Porosity on Fracture Toughness and Fracture Behavior of Antibiotic-Loaded PMMA Bone Cement.
    Kim S; Baril C; Rudraraju S; Ploeg HL
    J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34286825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bending and fracture toughness of woven self-reinforced composite poly(methyl methacrylate).
    Wright DD; Lautenschlager EP; Gilbert JL
    J Biomed Mater Res; 1997 Sep; 36(4):441-53. PubMed ID: 9294760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement.
    Khandaker M; Vaughan MB; Morris TL; White JJ; Meng Z
    Int J Nanomedicine; 2014; 9():2699-712. PubMed ID: 24920906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fracture toughness of titanium-cement interfaces: effects of fibers and loading angles.
    Khandaker M; Utsaha KC; Morris T
    Int J Nanomedicine; 2014; 9():1689-97. PubMed ID: 24729704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Different Experience Levels of Orthopaedic Residents Effect on Polymethylmethacrylate (PMMA) Bone Cement Mechanical Properties.
    Struemph JM; Chong AC; Wooley PH
    Iowa Orthop J; 2015; 35():193-8. PubMed ID: 26361465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro and nano MgO particles for the improvement of fracture toughness of bone-cement interfaces.
    Khandaker M; Li Y; Morris T
    J Biomech; 2013 Mar; 46(5):1035-9. PubMed ID: 23332232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Material Mismatch Effect on the Fracture of a Bone-Composite Cement Interface.
    Khandaker M; Tarantini S
    Adv Mater Sci Appl; 2012 Dec; 1(1):1-8. PubMed ID: 24761427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of fiber patterns on the fracture of implant/cement interfaces.
    Khandaker M; Kc U; Khadaka A
    Procedia Eng; 2014; 90():32-38. PubMed ID: 26413175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability of PMMA bone cement fixation: fracture and fatigue crack-growth behaviour.
    Nguyen NC; Maloney WJ; Dauskardt RH
    J Mater Sci Mater Med; 1997 Aug; 8(8):473-83. PubMed ID: 15348713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fracture Toughness of Acrylic PMMA Bone Cement: A Mini-Review.
    Kumar A; Ghosh R
    Indian J Orthop; 2021 Oct; 55(5):1208-1214. PubMed ID: 34824722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial properties of self-reinforced composite poly(methyl methacrylate).
    Wright DD; Lautenschlager EP; Gilbert JL
    J Biomed Mater Res; 1998; 43(2):153-61. PubMed ID: 9619433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fracture behavior of cancellous bone and cancellous bone-PMMA bone cement interface: An experimental study using an integrated methodology (wedge splitting test and Heaviside-based digital image correlation).
    Bokam P; Germaneau A; Breque C; Rigoard P; Vendeuvre T; Valle V
    J Mech Behav Biomed Mater; 2021 Oct; 122():104663. PubMed ID: 34246077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial strength of novel PMMA/HA/nanoclay bone cement.
    Wang CX; Tong J
    Biomed Mater Eng; 2008; 18(6):367-75. PubMed ID: 19197113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probabilistic Prediction of Strength and Fracture Toughness Scatters for Ceramics Using Normal Distribution.
    Zhang C; Yang S
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30832330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative radiopacifiers for polymethyl methacrylate bone cements: Silane-treated anatase titanium dioxide and yttria-stabilised zirconium dioxide.
    Ayre WN; Scully N; Elford C; Evans BA; Rowe W; Rowlands J; Mitha R; Malpas P; Manti P; Holt C; Morgan-Jones R; Birchall JC; Denyer SP; Evans SL
    J Biomater Appl; 2021 May; 35(10):1235-1252. PubMed ID: 33573445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of poly(methyl methacrylate) bone cements.
    Robinson RP; Wright TM; Burstein AH
    J Biomed Mater Res; 1981 Mar; 15(2):203-8. PubMed ID: 7348714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastic and ultimate properties of acrylic bone cement reinforced with ultra-high-molecular-weight polyethylene fibers.
    Pourdeyhimi B; Wagner HD
    J Biomed Mater Res; 1989 Jan; 23(1):63-80. PubMed ID: 2708405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of centrifugation and titanium fiber reinforcement on fatigue failure mechanisms in poly(methyl methacrylate) bone cement.
    Topoleski LD; Ducheyne P; Cuckler JM
    J Biomed Mater Res; 1995 Mar; 29(3):299-307. PubMed ID: 7615581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.