These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36080708)

  • 1. Robust Impact Effect and Super-Lyophobic Reduced Galinstan on Polymers Applied for Energy Harvester.
    Chen H; Hu S; Jin Y; Zhang A; Hua L; Du J; Li G
    Polymers (Basel); 2022 Sep; 14(17):. PubMed ID: 36080708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PDMS based coplanar microfluidic channels for the surface reduction of oxidized Galinstan.
    Li G; Parmar M; Kim D; Lee JB; Lee DW
    Lab Chip; 2014 Jan; 14(1):200-9. PubMed ID: 24193151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smooth transportation of liquid metal droplets in a microchannel as detected by a serially arranged capacitive device.
    Konishi S; Kakehi Y; Mori F; Bono S
    Sci Rep; 2021 Mar; 11(1):7048. PubMed ID: 33782452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric Power Self-Supply Module for WSN Sensor Node Based on MEMS Vibration Energy Harvester.
    Zhang W; Dong Y; Tan Y; Zhang M; Qian X; Wang X
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Energy Harvesting from Bridge Vibration Excited by Moving Vehicles with a Bi-Stable Harvester.
    Zhou Z; Zhang H; Qin W; Zhu P; Du W
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A galinstan-based inkjet printing system for highly stretchable electronics with self-healing capability.
    Li G; Wu X; Lee DW
    Lab Chip; 2016 Apr; 16(8):1366-73. PubMed ID: 26987310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Working characteristics of a magnetostrictive vibration energy harvester for rotating car wheels.
    Liu H; Dong W; Chang Y; Gao Y; Li W
    Rev Sci Instrum; 2022 May; 93(5):055001. PubMed ID: 35649761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Study on the Underwater Energy Harvester with Two PVDFs Installed on the FTEH and CTEH at the End of the Support.
    Lee J; An J; Lee C; Jeong Y; Seo HS; Cho Y
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic Force-Assisted Nonlinear Three-Dimensional Wideband Energy Harvester Using Magnetostrictive/Piezoelectric Composite Transducers.
    Lin Z; Li H; Lv S; Zhang B; Wu Z; Yang J
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester.
    Zhu Y; Zhang Z; Zhang P; Tan Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Device Oriented Flexible and Stretchable Energy Harvester Based on Embedded Liquid-Metal Electrodes and FEP Electret Film.
    Xie J; Wang Y; Dong R; Tao K
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31947525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies.
    Zhao N; Yang J; Yu Q; Zhao J; Liu J; Wen Y; Li P
    Rev Sci Instrum; 2016 Jan; 87(1):015003. PubMed ID: 26827346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Direction Self-Tuning Two-Dimensional Piezoelectric Vibration Energy Harvester.
    Zhao H; Wei X; Zhong Y; Wang P
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double-Deck Metal Solenoids 3D Integrated in Silicon Wafer for Kinetic Energy Harvester.
    Wang N; Han R; Chen C; Gu J; Li X
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33445444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cost-effective surface modification for Galinstan® lyophobicity.
    Kadlaskar SS; Yoo JH; Abhijeet ; Lee JB; Choi W
    J Colloid Interface Sci; 2017 Apr; 492():33-40. PubMed ID: 28068542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and Transformations of Room-Temperature Liquid Metal Interfaces - A Closer Look through Interfacial Tension.
    Handschuh-Wang S; Chen Y; Zhu L; Zhou X
    Chemphyschem; 2018 Jul; 19(13):1584-1592. PubMed ID: 29539243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An oxidized liquid metal-based microfluidic platform for tunable electronic device applications.
    Li G; Parmar M; Lee DW
    Lab Chip; 2015 Feb; 15(3):766-75. PubMed ID: 25431832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Polymer-based Piezoelectric Vibration Energy Harvester with a 3D Meshed-Core Structure.
    Tsukamoto T; Umino Y; Hashikura K; Shiomi S; Yamada K; Suzuki T
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30855575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes.
    Yu H; Yue Q; Zhou J; Wang W
    Sensors (Basel); 2014 May; 14(5):8740-55. PubMed ID: 24854054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design Procedure and Experimental Verification of a Broadband Quad-Stable 2-DOF Vibration Energy Harvester.
    Zayed AAA; Assal SFM; Nakano K; Kaizuka T; El-Bab AMRF
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.