These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36080714)

  • 1. Fabrication of Textile-Based Dry Electrode and Analysis of Its Surface EMG Signal for Applying Smart Wear.
    Kim H; Rho S; Han S; Lim D; Jeong W
    Polymers (Basel); 2022 Sep; 14(17):. PubMed ID: 36080714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Characterization of Embroidery-Based Textile Electrodes for Surface EMG Detection.
    Kim H; Kim S; Lim D; Jeong W
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and Evaluation of Embroidery-Based Electrode for EMG Smart Wear Using Moss Stitch Technique.
    Rho S; Kim H; Lim D; Jeong W
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Sleeve Pattern and Fit on E-Textile Electromyography (EMG) Electrode Performance in Smart Clothing Design.
    Goncu-Berk G; Tuna BG
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Novel Embroidered Textile-Electrodes Made from Hybrid Polyamide Conductive Threads for Surface EMG Sensing.
    Etana BB; Malengier B; Kwa T; Krishnamoorthy J; Langenhove LV
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the Impedance Properties of Dry E-Textile Electrodes Based on Contact Force and Perspiration.
    Ravichandran V; Ciesielska-Wrobel I; Rumon MAA; Solanki D; Mankodiya K
    Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roll-to-roll fabrication of silver/silver chloride coated yarns for dry electrodes and applications in biosignal monitoring.
    Le K; Soltanian S; Narayana H; Servati A; Servati P; Ko F
    Sci Rep; 2023 Dec; 13(1):21182. PubMed ID: 38040739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wireless CardioS framework for continuous ECG acquisition.
    Sriraam N; Srinivasulu A; Prakash VS
    J Med Eng Technol; 2023; 47(4):201-216. PubMed ID: 37910047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances and Challenges in Textile Electrodes for Wearable Biopotential Signal Monitoring: A Comprehensive Review.
    Vidhya CM; Maithani Y; Singh JP
    Biosensors (Basel); 2023 Jun; 13(7):. PubMed ID: 37504078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel.
    Puurtinen MM; Komulainen SM; Kauppinen PK; Malmivuo JA; Hyttinen JA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6012-5. PubMed ID: 17946734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Cost-Effective and Easy-to-Fabricate Conductive Velcro Dry Electrode for Durable and High-Performance Biopotential Acquisition.
    Guo J; Wang X; Bai R; Zhang Z; Chen H; Xue K; Ma C; Zang D; Yin E; Gao K; Ji B
    Biosensors (Basel); 2024 Sep; 14(9):. PubMed ID: 39329808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of dry textile electrodes for long-term electrocardiographic monitoring.
    Alizadeh-Meghrazi M; Ying B; Schlums A; Lam E; Eskandarian L; Abbas F; Sidhu G; Mahnam A; Moineau B; Popovic MR
    Biomed Eng Online; 2021 Jul; 20(1):68. PubMed ID: 34247646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dry Electrodes for Human Bioelectrical Signal Monitoring.
    Fu Y; Zhao J; Dong Y; Wang X
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32610658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of Polymer-Based Screen-Printed Textile Electrodes for Surface EMG Detection.
    Pani D; Achilli A; Spanu A; Bonfiglio A; Gazzoni M; Botter A
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1370-1377. PubMed ID: 31144638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Mass-Producible Washable Smart Garment with Embedded Textile EMG Electrodes for Control of Myoelectric Prostheses: A Pilot Study.
    Alizadeh-Meghrazi M; Sidhu G; Jain S; Stone M; Eskandarian L; Toossi A; Popovic MR
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EMG Measurement with Textile-Based Electrodes in Different Electrode Sizes and Clothing Pressures for Smart Clothing Design Optimization.
    Kim S; Lee S; Jeong W
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33086662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dry Epidermal Electrodes Can Provide Long-Term High Fidelity Electromyography for Limited Dynamic Lower Limb Movements.
    Li J; Wang P; Huang HJ
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Textile Electrodes: Influence of Knitting Construction and Pressure on the Contact Impedance.
    Euler L; Guo L; Persson NK
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable Smart Textiles for Long-Term Electrocardiography Monitoring-A Review.
    Nigusse AB; Mengistie DA; Malengier B; Tseghai GB; Langenhove LV
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34204577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring textile-based electrode materials for electromyography smart garments.
    Lam E; Alizadeh-Meghrazi M; Schlums A; Eskandarian L; Mahnam A; Moineau B; Popovic MR
    J Rehabil Assist Technol Eng; 2022; 9():20556683211061995. PubMed ID: 35127129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.