These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36080714)

  • 41. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites.
    Li G; Wu J; Xia Y; Wu Y; Tian Y; Liu J; Chen D; He Q
    J Neural Eng; 2020 Mar; 17(2):026001. PubMed ID: 32000145
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition.
    Xue H; Wang D; Jin M; Gao H; Wang X; Xia L; Li D; Sun K; Wang H; Dong X; Zhang C; Cong F; Lin J
    Microsyst Nanoeng; 2023; 9():79. PubMed ID: 37313471
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication of Micro-Needle Electrodes for Bio-Signal Recording by a Magnetization-Induced Self-Assembly Method.
    Chen K; Ren L; Chen Z; Pan C; Zhou W; Jiang L
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27657072
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multimodal Electrophysiological Signal Measurement using a New Flexible and Conductive Polymer Fiber-electrode.
    Gauthier N; Roudjane M; Frasie A; Loukili M; Saad AB; Page I; Messaddeq Y; Bouyer LJ; Gosselin B
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4373-4376. PubMed ID: 33018964
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring.
    Zhang L; Kumar KS; He H; Cai CJ; He X; Gao H; Yue S; Li C; Seet RC; Ren H; Ouyang J
    Nat Commun; 2020 Sep; 11(1):4683. PubMed ID: 32943621
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording.
    Ren L; Xu S; Gao J; Lin Z; Chen Z; Liu B; Liang L; Jiang L
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29652835
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluating Major Electrode Types for Idle Biological Signal Measurements for Modern Medical Technology.
    Albulbul A
    Bioengineering (Basel); 2016 Aug; 3(3):. PubMed ID: 28952582
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrochemical modeling and evaluation for textile electrodes to skin.
    Song J; Zhang Y; Yang Y; Liu H; Zhou T; Zhang K; Li F; Xu Z; Liu Q; Li J
    Biomed Eng Online; 2020 May; 19(1):30. PubMed ID: 32393332
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advances in Soft and Dry Electrodes for Wearable Health Monitoring Devices.
    Kim H; Kim E; Choi C; Yeo WH
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457934
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fully Textile, PEDOT:PSS Based Electrodes for Wearable ECG Monitoring Systems.
    Pani D; Dessi A; Saenz-Cogollo JF; Barabino G; Fraboni B; Bonfiglio A
    IEEE Trans Biomed Eng; 2016 Mar; 63(3):540-9. PubMed ID: 26259215
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Non-Newtonian liquid metal enabled enhanced electrography.
    Timosina V; Cole T; Lu H; Shu J; Zhou X; Zhang C; Guo J; Kavehei O; Tang SY
    Biosens Bioelectron; 2023 Sep; 235():115414. PubMed ID: 37236012
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Textile-based electrochemical sensors and their applications.
    Sinha A; Dhanjai ; Stavrakis AK; Stojanović GM
    Talanta; 2022 Jul; 244():123425. PubMed ID: 35397323
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel functional electrical stimulation sleeve based on textile-embedded dry electrodes.
    Garnier B; Marquez-Chin M; DiNunzio S; Iwasa SN; Saadatnia Z; Naguib HE; Popovic MR
    Biomed Eng Online; 2024 Jun; 23(1):51. PubMed ID: 38835079
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Increased Conductivity and Reduced Settling Time of Carbon-Based Electrodes By Addition of Sea Salt for Wearable Application.
    Noh Y; Ye X; Murphy L; Eaton-Robb C; Dimitrov T; Choi WJ; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1291-1294. PubMed ID: 30440627
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamic Surface Electromyography Using Stretchable Screen-Printed Textile Electrodes.
    Spanu A; Botter A; Zedda A; Cerone GL; Bonfiglio A; Pani D
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1661-1668. PubMed ID: 34398755
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Embroidered Electromyography: A Systematic Design Guide.
    Shafti A; Ribas Manero RB; Borg AM; Althoefer K; Howard MJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1472-1480. PubMed ID: 27913353
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Novel Screen-Printed Textile Interface for High-Density Electromyography Recording.
    Murciego LP; Komolafe A; Peřinka N; Nunes-Matos H; Junker K; Díez AG; Lanceros-Méndez S; Torah R; Spaich EG; Dosen S
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772153
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Novel Antibacterial Membrane Electrode Based on Bacterial Cellulose/Polyaniline/AgNO
    Zhang N; Yue L; Xie Y; Samuel OW; Omisore OM; Pei W; Xing X; Lin C; Zheng Y; Wang L
    IEEE J Transl Eng Health Med; 2018; 6():2700310. PubMed ID: 30310760
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Benchtop Performance of Novel Mixed Ionic-Electronic Conductive Electrode Form Factors for Biopotential Recordings.
    Colachis M; Schlink BR; Colachis S; Shqau K; Huegen BL; Palmer K; Heintz A
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793990
    [No Abstract]   [Full Text] [Related]  

  • 60. Fructus Xanthii-Inspired Low Dynamic Noise Dry Bioelectrodes for Surface Monitoring of ECG.
    Niu X; Wang L; Li H; Wang T; Liu H; He Y
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):6028-6038. PubMed ID: 35044157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.