These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36080846)

  • 21. [Retrieval of Copper Pollution Information from Hyperspectral Satellite Data in a Vegetation Cover Mining Area].
    Qu YH; Jiao SH; Liu SH; Zhu YQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3176-81. PubMed ID: 26978931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accuracy of Vegetation Indices in Assessing Different Grades of Grassland Desertification from UAV.
    Xu X; Liu L; Han P; Gong X; Zhang Q
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Applications of Unmanned Aerial Vehicle Based Imagery in Turfgrass Field Trials.
    Zhang J; Virk S; Porter W; Kenworthy K; Sullivan D; Schwartz B
    Front Plant Sci; 2019; 10():279. PubMed ID: 30930917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatiotemporal variation of vegetation cover in mining areas of Dexing City, China.
    Yu H; Zahidi I; Liang D
    Environ Res; 2023 May; 225():115634. PubMed ID: 36889570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A model for phenotyping crop fractional vegetation cover using imagery from unmanned aerial vehicles.
    Wan L; Zhu J; Du X; Zhang J; Han X; Zhou W; Li X; Liu J; Liang F; He Y; Cen H
    J Exp Bot; 2021 Jun; 72(13):4691-4707. PubMed ID: 33963382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.
    Gillan JK; Karl JW; Duniway M; Elaksher A
    J Environ Manage; 2014 Nov; 144():226-35. PubMed ID: 24973611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Above-Ground Biomass Estimation in Oats Using UAV Remote Sensing and Machine Learning.
    Sharma P; Leigh L; Chang J; Maimaitijiang M; Caffé M
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Inversion of Water Quality Parameters Based on UAV Multispectral Images and the OPT-MPP Algorithm].
    Huang XX; Ying HT; Xia K; Feng HL; Yang YH; Du XC
    Huan Jing Ke Xue; 2020 Aug; 41(8):3591-3600. PubMed ID: 33124332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Data for 3D reconstruction and point cloud classification using machine learning in cultural heritage environment.
    Pepe M; Alfio VS; Costantino D; Scaringi D
    Data Brief; 2022 Jun; 42():108250. PubMed ID: 35599832
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vegetation growth status as an early warning indicator for the spontaneous combustion disaster of coal waste dump after reclamation: An unmanned aerial vehicle remote sensing approach.
    Ren H; Zhao Y; Xiao W; Zhang J; Chen C; Ding B; Yang X
    J Environ Manage; 2022 Sep; 317():115502. PubMed ID: 35751291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Land damage assessment using maize aboveground biomass estimated from unmanned aerial vehicle in high groundwater level regions affected by underground coal mining.
    Ren H; Xiao W; Zhao Y; Hu Z
    Environ Sci Pollut Res Int; 2020 Jun; 27(17):21666-21679. PubMed ID: 32279270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disturbed boundaries extraction in coal-grain overlap areas with high groundwater levels using UAV-based visible and multispectral imagery.
    Guo Y; Zhao Y; Yan H
    Environ Sci Pollut Res Int; 2022 Aug; 29(39):58892-58905. PubMed ID: 35378647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimating herbaceous aboveground biomass in Sahelian rangelands using Structure from Motion data collected on the ground and by UAV.
    Taugourdeau S; Diedhiou A; Fassinou C; Bossoukpe M; Diatta O; N'Goran A; Auderbert A; Ndiaye O; Diouf AA; Tagesson T; Fensholt R; Faye E
    Ecol Evol; 2022 May; 12(5):e8867. PubMed ID: 35509616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Land use classification of open-pit mine based on multi-scale segmentation and random forest model.
    Yu X; Zhang K; Zhang Y
    PLoS One; 2022; 17(2):e0263870. PubMed ID: 35157729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ecological environment changes of mining areas around Nansi lake with remote sensing monitoring.
    Liu H; Jiang Y; Misa R; Gao J; Xia M; Preusse A; Sroka A; Jiang Y
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):44152-44164. PubMed ID: 33846912
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel method for cliff vegetation estimation based on the unmanned aerial vehicle 3D modeling.
    Li M; Yan E; Zhou H; Zhu J; Jiang J; Mo D
    Front Plant Sci; 2022; 13():1006795. PubMed ID: 36212293
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mine Vegetation Identification via Ecological Monitoring and Deep Belief Network.
    Gong B; Shu C; Han S; Cheng SG
    Plants (Basel); 2021 May; 10(6):. PubMed ID: 34070739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Method for accurate multi-growth-stage estimation of fractional vegetation cover using unmanned aerial vehicle remote sensing.
    Yue J; Guo W; Yang G; Zhou C; Feng H; Qiao H
    Plant Methods; 2021 May; 17(1):51. PubMed ID: 34001195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops.
    Hu P; Chapman SC; Zheng B
    Funct Plant Biol; 2021 Jul; 48(8):766-779. PubMed ID: 33663681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management.
    Torres-Sánchez J; López-Granados F; De Castro AI; Peña-Barragán JM
    PLoS One; 2013; 8(3):e58210. PubMed ID: 23483997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.