These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36080889)

  • 1. Minimize Tracking Occlusion in Collaborative Pick-and-Place Tasks: An Analytical Approach for Non-Wrist-Partitioned Manipulators.
    Montazer Zohour H; Belzile B; Gomes Braga R; St-Onge D
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spherical Wrist Manipulator Local Planner for Redundant Tasks in Collaborative Environments.
    Chiurazzi M; Alcaide JO; Diodato A; Menciassi A; Ciuti G
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Improved Weighted Gradient Projection Method for Inverse Kinematics of Redundant Surgical Manipulators.
    Zhang X; Fan B; Wang C; Cheng X
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Failure Handling of Robotic Pick and Place Tasks With Multimodal Cues Under Partial Object Occlusion.
    Zhu F; Wang L; Wen Y; Yang L; Pan J; Wang Z; Wang W
    Front Neurorobot; 2021; 15():570507. PubMed ID: 33762921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of two actuation systems for laparoscopic surgical manipulators using motion analysis.
    Kolwadkar YV; Brown SI; Abboud RJ; Wang W
    Surg Endosc; 2011 Mar; 25(3):964-74. PubMed ID: 20734072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Analytical Solution for Inverse Kinematics of SSRMS-Type Redundant Manipulators.
    Qin L; Wei X; Lv L; Han L; Fang G
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotic-surgical instrument wrist pose estimation.
    Fabel S; Baek K; Berkelman P
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():971-4. PubMed ID: 21096983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot.
    Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L
    Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual-inertial hand motion tracking with robustness against occlusion, interference, and contact.
    Lee Y; Do W; Yoon H; Heo J; Lee W; Lee D
    Sci Robot; 2021 Sep; 6(58):eabe1315. PubMed ID: 34586835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Neural Network Based Approach to Inverse Kinematics Problem for General Six-Axis Robots.
    Lu J; Zou T; Jiang X
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution of Inverse Kinematics for 6R Robot Manipulators With Offset Wrist Based on Geometric Algebra.
    Fu Z; Yang W; Yang Z
    J Mech Robot; 2013 Aug; 5(3):310081-310087. PubMed ID: 23918347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematics and workspace analysis of a robotic device for performing rehabilitation therapy of upper limb in stroke-affected patients.
    Valayil TP; Augustine RS
    Acta Bioeng Biomech; 2021; 23(3):175-189. PubMed ID: 34978313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of a Real-Time Object Pick-and-Place System Based on a Changing Strategy for Rapidly-Exploring Random Tree.
    Wong CC; Chen CJ; Wong KY; Feng HM
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-Time Limb Motion Tracking with a Single IMU Sensor for Physical Therapy Exercises.
    Wei W; Kurita K; Kuang J; Gao A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7152-7157. PubMed ID: 34892750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Predictable Obstacle Avoidance Model Based on Geometric Configuration of Redundant Manipulators for Motion Planning.
    Ju F; Jin H; Wang B; Zhao J
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new performance index for the repetitive motion of mobile manipulators.
    Xiao L; Zhang Y
    IEEE Trans Cybern; 2014 Feb; 44(2):280-92. PubMed ID: 23757549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A repeatable inverse kinematics algorithm with linear invariant subspaces for mobile manipulators.
    TchoƄ K; Jakubiak J
    IEEE Trans Syst Man Cybern B Cybern; 2005 Oct; 35(5):1051-7. PubMed ID: 16240778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation of six degree-of-freedom high-precision robotic phantom on commercial industrial robotic manipulator.
    Fujii F; Nonomura T; Shiinoki T
    Biomed Phys Eng Express; 2021 Aug; 7(5):. PubMed ID: 34330110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recurrent neural networks as kinematics estimator and controller for redundant manipulators subject to physical constraints.
    Tan N; Yu P; Liao S; Sun Z
    Neural Netw; 2022 Sep; 153():64-75. PubMed ID: 35700560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators.
    Xu W; Chen J; Lau HYK; Ren H
    Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27647806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.