BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 36080942)

  • 1. Design of Ultra-Narrow Band Graphene Refractive Index Sensor.
    Shangguan Q; Chen Z; Yang H; Cheng S; Yang W; Yi Z; Wu X; Wang S; Yi Y; Wu P
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a Penta-Band Graphene-Based Terahertz Metamaterial Absorber with Fine Sensing Performance.
    Lai R; Chen H; Zhou Z; Yi Z; Tang B; Chen J; Yi Y; Tang C; Zhang J; Sun T
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triple-Band Surface Plasmon Resonance Metamaterial Absorber Based on Open-Ended Prohibited Sign Type Monolayer Graphene.
    Lai R; Shi P; Yi Z; Li H; Yi Y
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable High-Sensitivity Four-Frequency Refractive Index Sensor Based on Graphene Metamaterial.
    Bao X; Yu S; Lu W; Hao Z; Yi Z; Cheng S; Tang B; Zhang J; Tang C; Yi Y
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Optimal Dual Band Metamaterial Absorber for High Sensitivity THz Refractive Index Sensing.
    Karthikeyan M; Jayabala P; Ramachandran S; Dhanabalan SS; Sivanesan T; Ponnusamy M
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A five-band absorber based on graphene metamaterial for terahertz ultrasensing.
    Jiang W; Chen T
    Nanotechnology; 2022 Jan; 33(16):. PubMed ID: 35016165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene.
    Chen H; Chen Z; Yang H; Wen L; Yi Z; Zhou Z; Dai B; Zhang J; Wu X; Wu P
    RSC Adv; 2022 Mar; 12(13):7821-7829. PubMed ID: 35424732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four-band terahertz metamaterial absorber based on Dirac semimetal for a refractive index sensing application.
    Jiang J; Xu W; Wu Y; Duan G; Xu C; Zhao Q; Zhu H; Zhang X; Wang BX
    Appl Opt; 2023 Jun; 62(17):4706-4715. PubMed ID: 37707169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Dual-Band High-Sensitivity THz Metamaterial Sensor Based on Split Metal Stacking Ring.
    Lu X; Ge H; Jiang Y; Zhang Y
    Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin, Ultra Narrow Band DMMA for Biosensing Applications.
    Upender P; Kumar A
    IEEE Trans Nanobioscience; 2023 Jul; 22(3):529-537. PubMed ID: 36288232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor.
    Wu D; Liu Y; Li R; Chen L; Ma R; Liu C; Ye H
    Nanoscale Res Lett; 2016 Dec; 11(1):483. PubMed ID: 27807825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity.
    Wu X; Zheng Y; Luo Y; Zhang J; Yi Z; Wu X; Cheng S; Yang W; Yu Y; Wu P
    Phys Chem Chem Phys; 2021 Dec; 23(47):26864-26873. PubMed ID: 34821236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refractive Index-Based Terahertz Sensor Using Graphene for Material Characterization.
    Veeraselvam A; Mohammed GNA; Savarimuthu K; Anguera J; Paul JC; Krishnan RK
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance terahertz refractive index sensor for cancer cells detection.
    Anwar S; Khan M
    Eur Phys J E Soft Matter; 2023 Mar; 46(3):19. PubMed ID: 36952098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive refractive index sensing with a dual-band optically transparent ITO-based perfect metamaterial absorber for biomedical applications.
    Mishu SJ; Rahman MA; Dhar N
    Heliyon; 2024 Mar; 10(5):e26842. PubMed ID: 38562491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bipolar charge trapping for absorption enhancement in a graphene-based ultrathin dual-band terahertz biosensor.
    Varshney G; Giri P
    Nanoscale Adv; 2021 Oct; 3(20):5813-5822. PubMed ID: 36132678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh-Q Polarization-Independent Terahertz Metamaterial Absorber Using Pattern-Free Graphene for Sensing Applications.
    Chen Y; Sun G; Wei J; Miao Y; Zhang W; Wu K; Wang Q
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive label-free biosensor: graphene/CaF
    Jafari B; Gholizadeh E; Jafari B; Zhoulideh M; Adibnia E; Ghafariasl M; Noori M; Golmohammadi S
    Sci Rep; 2023 Sep; 13(1):16184. PubMed ID: 37758823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. THz broadband and dual-channel perfect absorbers based on patterned graphene and vanadium dioxide metamaterials.
    Zhuo S; Liu Z; Zhou F; Qin Y; Luo X; Ji C; Yang G; Yang R; Xie Y
    Opt Express; 2022 Dec; 30(26):47647-47658. PubMed ID: 36558688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altering the Multimodal Resonance in Ultrathin Silicon Ring for Tunable THz Biosensing.
    Khan MS; Varshney G; Giri P
    IEEE Trans Nanobioscience; 2021 Oct; 20(4):488-496. PubMed ID: 34410927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.