These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36080993)

  • 1. Efficient Obstacle Detection and Tracking Using RGB-D Sensor Data in Dynamic Environments for Robotic Applications.
    Saha A; Dhara BC; Umer S; Yurii K; Alanazi JM; AlZubi AA
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Obstacle Detection System for Agricultural Mobile Robot Application Using RGB-D Cameras.
    Skoczeń M; Ochman M; Spyra K; Nikodem M; Krata D; Panek M; Pawłowski A
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Obstacle Avoidance of Multi-Sensor Intelligent Robot Based on Road Sign Detection.
    Zhao J; Fang J; Wang S; Wang K; Liu C; Han T
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution to the SLAM problem in low dynamic environments using a pose graph and an RGB-D sensor.
    Lee D; Myung H
    Sensors (Basel); 2014 Jul; 14(7):12467-96. PubMed ID: 25019633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unifying obstacle detection, recognition, and fusion based on millimeter wave radar and RGB-depth sensors for the visually impaired.
    Long N; Wang K; Cheng R; Hu W; Yang K
    Rev Sci Instrum; 2019 Apr; 90(4):044102. PubMed ID: 31042998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Kinect-based real-time compressive tracking prototype system for amphibious spherical robots.
    Pan S; Shi L; Guo S
    Sensors (Basel); 2015 Apr; 15(4):8232-52. PubMed ID: 25856331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unknown Object Detection Using a One-Class Support Vector Machine for a Cloud-Robot System.
    Kabir R; Watanobe Y; Islam MR; Naruse K; Rahman MM
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A featureless approach for object detection and tracking in dynamic environments.
    Zohaib M; Ahsan M; Khan M; Iqbal J
    PLoS One; 2023; 18(1):e0280476. PubMed ID: 36649310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic-Field-Inspired Navigation for Robots in Complex and Unknown Environments.
    Ataka A; Lam HK; Althoefer K
    Front Robot AI; 2022; 9():834177. PubMed ID: 35252366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereo vision tracking of multiple objects in complex indoor environments.
    Marrón-Romera M; García JC; Sotelo MA; Pizarro D; Mazo M; Cañas JM; Losada C; Marcos A
    Sensors (Basel); 2010; 10(10):8865-87. PubMed ID: 22163385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locating and Counting Heads in Crowds With a Depth Prior.
    Lian D; Chen X; Li J; Luo W; Gao S
    IEEE Trans Pattern Anal Mach Intell; 2022 Dec; 44(12):9056-9072. PubMed ID: 34735337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots.
    Lee TJ; Yi DH; Cho DI
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26938540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fuzzy Guided Autonomous Nursing Robot through Wireless Beacon Network.
    Narayanan KL; Krishnan RS; Son LH; Tung NT; Julie EG; Robinson YH; Kumar R; Gerogiannis VC
    Multimed Tools Appl; 2022; 81(3):3297-3325. PubMed ID: 34345198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fuzzy integral-based gaze control architecture incorporated with modified-univector field-based navigation for humanoid robots.
    Yoo JK; Kim JH
    IEEE Trans Syst Man Cybern B Cybern; 2012 Feb; 42(1):125-39. PubMed ID: 21878418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic obstacle detection method based on U-V disparity and residual optical flow for autonomous driving.
    Yuan J; Jiang T; He X; Wu S; Liu J; Guo D
    Sci Rep; 2023 May; 13(1):7630. PubMed ID: 37165106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal Frontier-Based Autonomous Exploration in Unconstructed Environment Using RGB-D Sensor.
    Lu L; Redondo C; Campoy P
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33202569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots.
    Nam TH; Shim JH; Cho YI
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Compact Magnetic Field-Based Obstacle Detection and Avoidance System for Miniature Spherical Robots.
    Wu F; Vibhute A; Soh GS; Wood KL; Foong S
    Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28555030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on Obstacle Detection and Avoidance of Autonomous Underwater Vehicle Based on Forward-Looking Sonar.
    Cao X; Ren L; Sun C
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):9198-9208. PubMed ID: 35294362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.