These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36081031)

  • 1. Distribution Adaptation and Classification Framework Based on Multiple Kernel Learning for Motor Imagery BCI Illiteracy.
    Tao L; Cao T; Wang Q; Liu D; Sun J
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36081031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method to reduce the motor imagery BCI illiteracy.
    Wang T; Du S; Dong E
    Med Biol Eng Comput; 2021 Nov; 59(11-12):2205-2217. PubMed ID: 34674118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Posthoc Interpretability of Neural Responses by Grouping Subject Motor Imagery Skills Using CNN-Based Connectivity.
    Collazos-Huertas DF; Álvarez-Meza AM; Cárdenas-Peña DA; Castaño-Duque GA; Castellanos-Domínguez CG
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MI-DABAN: A dual-attention-based adversarial network for motor imagery classification.
    Li H; Zhang D; Xie J
    Comput Biol Med; 2023 Jan; 152():106420. PubMed ID: 36529022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bridging the BCI illiteracy gap: a subject-to-subject semantic style transfer for EEG-based motor imagery classification.
    Kim DH; Shin DH; Kam TE
    Front Hum Neurosci; 2023; 17():1194751. PubMed ID: 37256201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cross-dataset adaptive domain selection transfer learning framework for motor imagery-based brain-computer interfaces.
    Jin J; Bai G; Xu R; Qin K; Sun H; Wang X; Cichocki A
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38885683
    [No Abstract]   [Full Text] [Related]  

  • 7. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users.
    Tibrewal N; Leeuwis N; Alimardani M
    PLoS One; 2022; 17(7):e0268880. PubMed ID: 35867703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system.
    Zheng M; Yang B; Xie Y
    Med Biol Eng Comput; 2020 Jul; 58(7):1515-1528. PubMed ID: 32394192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy.
    Lee MH; Kwon OY; Kim YJ; Kim HK; Lee YE; Williamson J; Fazli S; Lee SW
    Gigascience; 2019 May; 8(5):. PubMed ID: 30698704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cluster decomposing and multi-objective optimization based-ensemble learning framework for motor imagery-based brain-computer interfaces.
    Zuo C; Jin J; Xu R; Wu L; Liu C; Miao Y; Wang X
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33524961
    [No Abstract]   [Full Text] [Related]  

  • 11. A novel method for classification of multi-class motor imagery tasks based on feature fusion.
    Hou Y; Chen T; Lun X; Wang F
    Neurosci Res; 2022 Mar; 176():40-48. PubMed ID: 34508756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer learning with data alignment and optimal transport for EEG based motor imagery classification.
    Chu C; Zhu L; Huang A; Xu P; Ying N; Zhang J
    J Neural Eng; 2024 Jan; 21(1):. PubMed ID: 38232381
    [No Abstract]   [Full Text] [Related]  

  • 13. Development of hybrid feature learner model integrating FDOSM for golden subject identification in motor imagery.
    Al-Qaysi ZT; Albahri AS; Ahmed MA; Mohammed SM
    Phys Eng Sci Med; 2023 Dec; 46(4):1519-1534. PubMed ID: 37603133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Execution, assessment and improvement methods of motor imagery for brain-computer interface].
    Tian G; Chen J; Ding P; Gong A; Wang F; Luo J; Dong Y; Zhao L; Dang C; Fu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):434-446. PubMed ID: 34180188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine-learning-based coadaptive calibration for brain-computer interfaces.
    Vidaurre C; Sannelli C; Müller KR; Blankertz B
    Neural Comput; 2011 Mar; 23(3):791-816. PubMed ID: 21162666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications.
    Chaudhary S; Taran S; Bajaj V; Siuly S
    Comput Methods Programs Biomed; 2020 Apr; 187():105325. PubMed ID: 31964514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Golden subject is everyone: A subject transfer neural network for motor imagery-based brain computer interfaces.
    Sun B; Wu Z; Hu Y; Li T
    Neural Netw; 2022 Jul; 151():111-120. PubMed ID: 35405471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG feature fusion for motor imagery: A new robust framework towards stroke patients rehabilitation.
    Al-Qazzaz NK; Alyasseri ZAA; Abdulkareem KH; Ali NS; Al-Mhiqani MN; Guger C
    Comput Biol Med; 2021 Oct; 137():104799. PubMed ID: 34478922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supervised and Semisupervised Manifold Embedded Knowledge Transfer in Motor Imagery-Based BCI.
    Xu Y; Yin H; Yi W; Huang X; Jian W; Wang C; Hu R
    Comput Intell Neurosci; 2022; 2022():1603104. PubMed ID: 36299440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor imagery EEG decoding using manifold embedded transfer learning.
    Cai Y; She Q; Ji J; Ma Y; Zhang J; Zhang Y
    J Neurosci Methods; 2022 Mar; 370():109489. PubMed ID: 35090904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.