These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36081103)

  • 1. Transmitter and Receiver Circuits for a High-Speed Polymer Fiber-Based PAM-4 Communication Link.
    Strömbeck F; Bao M; He ZS; Zirath H
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 30 pJ/b, 67 Mbps, Centimeter-to-Meter Range Data Telemetry With an IR-UWB Wireless Link.
    Ebrazeh A; Mohseni P
    IEEE Trans Biomed Circuits Syst; 2015 Jun; 9(3):362-9. PubMed ID: 25134088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Energy-Efficient and High-Data-Rate IR-UWB Transmitter for Intracortical Neural Sensing Interfaces.
    Song M; Huang Y; Visser HJ; Romme J; Liu YH
    IEEE J Solid-State Circuits; 2022 Dec; 57(12):3656-3668. PubMed ID: 36743394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon photonic receiver and transmitter operating up to 36 Gb/s for λ~1550 nm.
    Joo J; Jang KS; Kim SH; Kim IG; Oh JH; Kim SA; Jeong GS; Kim Y; Park JE; Kim S; Chi H; Jeong DK; Kim G
    Opt Express; 2015 May; 23(9):12232-43. PubMed ID: 25969309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 6-9 GHz 1.28 Gbps 76 mW Amplitude and Synchronized Time Shift Keying IR-UWB CMOS Transceiver for Brain Computer Interfaces.
    Lee G; Jang J; Song K; Kim TW
    IEEE Trans Biomed Circuits Syst; 2024 Sep; PP():. PubMed ID: 39312418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 224-Gbps single-photodiode PAM-4 transmission with extended transmitter bandwidth based on optical time-and-polarization interleaving.
    Zhang X; Fu Y; Kong D; Li L; Jia S; Wei J; Chen C; Zhang C; Qiu K; Hu H
    Opt Express; 2020 Jul; 28(14):21155-21164. PubMed ID: 32680161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Net-400-Gbps PS-PAM transmission using integrated AMUX-MZM.
    Yamazaki H; Nakamura M; Kobayashi T; Nagatani M; Wakita H; Ogiso Y; Nosaka H; Hashimoto T; Miyamoto Y
    Opt Express; 2019 Sep; 27(18):25544-25550. PubMed ID: 31510425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time reception of 106 Gbps PAM-4 transmission over an 80 km SSMF link enabled by CD pre-compensation.
    Yang Y; Zhang Q; Qu S; Zhong K
    Opt Express; 2021 Jul; 29(15):23517-23523. PubMed ID: 34614616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-power UTC-photodiodes for an optically pumped subharmonic terahertz receiver.
    Makhlouf S; Martinez-Gil J; Grzeslo M; Moro-Melgar D; Cojocari O; Stöhr A
    Opt Express; 2022 Nov; 30(24):43798-43814. PubMed ID: 36523071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 10 Gbps DPSK transmission over free-space link in the mid-infrared.
    Su Y; Wang W; Hu X; Hu H; Huang X; Wang Y; Si J; Xie X; Han B; Feng H; Hao Q; Zhu G; Duan T; Zhao W
    Opt Express; 2018 Dec; 26(26):34515-34528. PubMed ID: 30650874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 8.8 Gbps PAM-4 visible light communication link using an external modulator and a neural network equalizer.
    Shi J; Wei Y; Luo Z; Li Z; Shen C; Zhang J; Chi N
    Opt Lett; 2023 Oct; 48(20):5193-5196. PubMed ID: 37831825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental demonstration of a 160 Gbit/s 3D-integrated silicon photonics receiver with 1.2-pJ/bit power consumption.
    Wu D; Wang D; Chen D; Yan J; Dang Z; Feng J; Chen S; Feng P; Zhang H; Fu Y; Wang L; Hu X; Xiao X; Yu S
    Opt Express; 2023 Jan; 31(3):4129-4139. PubMed ID: 36785388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Band Power Amplifier Module with Back-Off Efficiency Improvement using Ultra-Compact 3D Vertical Stack Multi-Chip Package for Cellular Handsets.
    Zhang Z; Li J; Peng L; Sun B
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 13.56-mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission.
    Kiani M; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2015 Feb; 9(1):1-11. PubMed ID: 24760945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Highly Energy-Efficient Body-Coupled Transceiver Employing a Power-on-Demand Amplifier.
    He T; Zheng Y; Liang X; Li J; Lin L; Zhao W; Li Y; Zhao J
    Cyborg Bionic Syst; 2023; 4():0030. PubMed ID: 37559940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmission of 2 × 56 Gb/s PAM-4 signal over 100 km SSMF using 18 GHz DMLs.
    Zhou S; Li X; Yi L; Yang Q; Fu S
    Opt Lett; 2016 Apr; 41(8):1805-8. PubMed ID: 27082350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 420 Gbit/s optical signal reception enabled by an inductive gain peaking Ge-Si photodetector with 80 GHz bandwidth.
    Hu X; Wu D; Liu Y; Liu M; Chen D; Wang L; Xiao X; Yu S
    Opt Express; 2023 May; 31(11):17987-17998. PubMed ID: 37381518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM.
    Chi YC; Hsieh DH; Tsai CT; Chen HY; Kuo HC; Lin GR
    Opt Express; 2015 May; 23(10):13051-9. PubMed ID: 26074558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 224-Gbit/s 4-PAM operation of a high-modulation-bandwidth high-output-power Hi-FIT AXEL transmitter.
    Kanazawa S; Shindo T; Chen M; Nakanishi Y; Nakamura H; Matsuzaki H
    Opt Lett; 2022 Jun; 47(12):3019-3022. PubMed ID: 35709051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-power DAC-less PAM-4 transmitter using a cascaded microring modulator.
    Dubé-Demers R; LaRochelle S; Shi W
    Opt Lett; 2016 Nov; 41(22):5369-5372. PubMed ID: 27842134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.