These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 36081103)
41. Experimental study of performance enhanced IM/DD transmissions based on constellation switching. Xiang M; Zhuge Q; Xing Z; Zhang K; Hoang TM; Zhang F; Plant DV Opt Express; 2018 Jun; 26(12):15480-15489. PubMed ID: 30114808 [TBL] [Abstract][Full Text] [Related]
42. Unequally spaced PAM-4 signaling enabled sensitivity enhancement of a simplified coherent receiver applied in a UDWDM-PON. Zhou J; Gan L; Chen Y; Yang Z; Yang Q; Tang M; Liu D; Fu S Opt Express; 2022 Sep; 30(20):35369-35381. PubMed ID: 36258490 [TBL] [Abstract][Full Text] [Related]
43. Cost-effective 400-Gbps micro-intradyne coherent receiver using optical butt-coupling and FPCB wirings. Lee SY; Han YT; Kim JH; Ko YH; Youn CJ; Jung HD; Choe JS; Han WS; Kim ST; Baek Y Opt Express; 2018 Oct; 26(22):28453-28460. PubMed ID: 30470016 [TBL] [Abstract][Full Text] [Related]
44. A high-speed electro-optic triple-microring resonator modulator. Hong J; Qiu F; Cheng X; Spring AM; Yokoyama S Sci Rep; 2017 Jul; 7(1):4682. PubMed ID: 28680038 [TBL] [Abstract][Full Text] [Related]
45. A 77 GHz Power Amplifier with 19.1 dBm Peak Output Power in 130 nm SiGe Process. Zhou P; Yan P; Chen J; Chen Z; Hong W Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138407 [TBL] [Abstract][Full Text] [Related]
46. A 20-44 GHz Wideband LNA Design Using the SiGe Technology for 5G Millimeter-Wave Applications. Balani W; Sarvagya M; Ali T; Samasgikar A; Kumar P; Pathan S; Pai M M M Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945370 [TBL] [Abstract][Full Text] [Related]
47. A wideband dual-antenna receiver for wireless recording from animals behaving in large arenas. Lee SB; Yin M; Manns JR; Ghovanloo M IEEE Trans Biomed Eng; 2013 Jul; 60(7):1993-2004. PubMed ID: 23428612 [TBL] [Abstract][Full Text] [Related]
48. Performance of M-PAM FSO communication systems in atmospheric turbulence based on APD detector. Yao H; Ni X; Chen C; Li B; Zhang X; Liu Y; Tong S; Liu Z; Jiang H Opt Express; 2018 Sep; 26(18):23819-23830. PubMed ID: 30184878 [TBL] [Abstract][Full Text] [Related]
49. A 0.66mW 400 MHz/900 MHz Transmitter IC for In-Body Bio-Sensing Applications. Guo Y; Li Y; Weng Z; Jiang H; Wang Z IEEE Trans Biomed Circuits Syst; 2022 Apr; 16(2):252-265. PubMed ID: 35226603 [TBL] [Abstract][Full Text] [Related]
50. TO-56-can packaged colorless WRC-FPLD for QAM OFDM transmission at 42 Gbit/s over 25-km SMF. Cheng MC; Chi YC; Tsai CT; Lin CY; Lin GR Opt Express; 2015 Aug; 23(17):22676-90. PubMed ID: 26368236 [TBL] [Abstract][Full Text] [Related]
51. Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations. Li CY; Lu HH; Lu TC; Chu CA; Chen BR; Lin CY; Peng PC Opt Express; 2015 Dec; 23(25):31807-16. PubMed ID: 26698972 [TBL] [Abstract][Full Text] [Related]
52. Numerical analyses of optical loss and modulation bandwidth of an InP organic hybrid optical modulator. Sekine N; Toprasertpong K; Takagi S; Takenaka M Opt Express; 2020 Sep; 28(20):29730-29739. PubMed ID: 33114865 [TBL] [Abstract][Full Text] [Related]
53. 2D Cu Yang S; Pi L; Li L; Liu K; Pei K; Han W; Wang F; Zhuge F; Li H; Cheng G; Zhai T Adv Mater; 2021 Dec; 33(52):e2106537. PubMed ID: 34614261 [TBL] [Abstract][Full Text] [Related]
54. Free-space transmission of picosecond-level, high-speed optical pulse streams in the 3 µm band. Su Y; Tian W; Yu Y; Meng J; Zheng Y; Jia S; Xie Z; Wang Y; Zhu J; Wang W Opt Express; 2023 Aug; 31(17):27433-27449. PubMed ID: 37710819 [TBL] [Abstract][Full Text] [Related]
55. A 2.4 GHz ISM Band OOK Transceiver With High Energy Efficiency for Biomedical Implantable Applications. Lee SY; Cheng PH; Tsou CF; Lin CC; Shieh GS IEEE Trans Biomed Circuits Syst; 2020 Feb; 14(1):113-124. PubMed ID: 31902768 [TBL] [Abstract][Full Text] [Related]
56. 52 Gbps PAM4 receiver sensitivity study for 400GBase-LR8 system using directly modulated laser. Motaghiannezam R; Pham T; Chen A; Du T; Kocot C; Xu J; Huebner B Opt Express; 2016 Apr; 24(7):7374-80. PubMed ID: 27137027 [TBL] [Abstract][Full Text] [Related]
57. Energy and Spectrally Efficient Modulation Scheme for IoT Applications. Hussein HS; Elsayed M; Fakhry M; Sayed Mohamed U Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544964 [TBL] [Abstract][Full Text] [Related]
58. 150 Gbps multi-wavelength FSO transmission with 25-GHz ITU-T grid in the mid-infrared region. Su Y; Meng J; Wei T; Xie Z; Jia S; Tian W; Zhu J; Wang W Opt Express; 2023 Apr; 31(9):15156-15169. PubMed ID: 37157363 [TBL] [Abstract][Full Text] [Related]
59. A 110-170 GHz Wideband LNA Design Using the InP Technology for Terahertz Communication Applications. Hu L; Yang Z; Fang Y; Li Q; Miao Y; Lu X; Sun X; Zhang Y Micromachines (Basel); 2023 Oct; 14(10):. PubMed ID: 37893358 [TBL] [Abstract][Full Text] [Related]
60. Single-lane 180 Gb/s DB-PAM-4-signal transmission over an 80 km DCF-free SSMF link. Zhang Q; Stojanovic N; Wei J; Xie C Opt Lett; 2017 Feb; 42(4):883-886. PubMed ID: 28198889 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]