BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 36081348)

  • 1. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction.
    Xu Y; Zhang X; Li H; Zheng H; Zhang J; Olsen MS; Varshney RK; Prasanna BM; Qian Q
    Mol Plant; 2022 Nov; 15(11):1664-1695. PubMed ID: 36081348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enviromics in breeding: applications and perspectives on envirotypic-assisted selection.
    Resende RT; Piepho HP; Rosa GJM; Silva-Junior OB; E Silva FF; de Resende MDV; Grattapaglia D
    Theor Appl Genet; 2021 Jan; 134(1):95-112. PubMed ID: 32964262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of Artificial Intelligence in Climate-Resilient Smart-Crop Breeding.
    Khan MHU; Wang S; Wang J; Ahmar S; Saeed S; Khan SU; Xu X; Chen H; Bhat JA; Feng X
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enviromic-based kernels may optimize resource allocation with multi-trait multi-environment genomic prediction for tropical Maize.
    Gevartosky R; Carvalho HF; Costa-Neto G; Montesinos-López OA; Crossa J; Fritsche-Neto R
    BMC Plant Biol; 2023 Jan; 23(1):10. PubMed ID: 36604618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning approaches for crop improvement: Leveraging phenotypic and genotypic big data.
    Tong H; Nikoloski Z
    J Plant Physiol; 2021 Feb; 257():153354. PubMed ID: 33385619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enviromic Assembly Increases Accuracy and Reduces Costs of the Genomic Prediction for Yield Plasticity in Maize.
    Costa-Neto G; Crossa J; Fritsche-Neto R
    Front Plant Sci; 2021; 12():717552. PubMed ID: 34691099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating Climate Resilient Plant Breeding by Applying Next-Generation Artificial Intelligence.
    Harfouche AL; Jacobson DA; Kainer D; Romero JC; Harfouche AH; Scarascia Mugnozza G; Moshelion M; Tuskan GA; Keurentjes JJB; Altman A
    Trends Biotechnol; 2019 Nov; 37(11):1217-1235. PubMed ID: 31235329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated Genomic Selection for Accelerating Breeding Programs of Climate-Smart Cereals.
    Sinha D; Maurya AK; Abdi G; Majeed M; Agarwal R; Mukherjee R; Ganguly S; Aziz R; Bhatia M; Majgaonkar A; Seal S; Das M; Banerjee S; Chowdhury S; Adeyemi SB; Chen JT
    Genes (Basel); 2023 Jul; 14(7):. PubMed ID: 37510388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in integrated genomic selection for rapid genetic gain in crop improvement: a review.
    Anilkumar C; Sunitha NC; Harikrishna ; Devate NB; Ramesh S
    Planta; 2022 Sep; 256(5):87. PubMed ID: 36149531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Satellite-enabled enviromics to enhance crop improvement.
    Resende RT; Hickey L; Amaral CH; Peixoto LL; Marcatti GE; Xu Y
    Mol Plant; 2024 Jun; 17(6):848-866. PubMed ID: 38637991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-modal deep learning improves grain yield prediction in wheat breeding by fusing genomics and phenomics.
    Togninalli M; Wang X; Kucera T; Shrestha S; Juliana P; Mondal S; Pinto F; Govindan V; Crespo-Herrera L; Huerta-Espino J; Singh RP; Borgwardt K; Poland J
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37220903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning bridges omics sciences and plant breeding.
    Yan J; Wang X
    Trends Plant Sci; 2023 Feb; 28(2):199-210. PubMed ID: 36153276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome optimization for improvement of maize breeding.
    Jiang S; Cheng Q; Yan J; Fu R; Wang X
    Theor Appl Genet; 2020 May; 133(5):1491-1502. PubMed ID: 31811314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Envirome-wide associations enhance multi-year genome-based prediction of historical wheat breeding data.
    Costa-Neto G; Crespo-Herrera L; Fradgley N; Gardner K; Bentley AR; Dreisigacker S; Fritsche-Neto R; Montesinos-López OA; Crossa J
    G3 (Bethesda); 2023 Feb; 13(2):. PubMed ID: 36454213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward integration of genomic selection with crop modelling: the development of an integrated approach to predicting rice heading dates.
    Onogi A; Watanabe M; Mochizuki T; Hayashi T; Nakagawa H; Hasegawa T; Iwata H
    Theor Appl Genet; 2016 Apr; 129(4):805-817. PubMed ID: 26791836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of multiple traits genomic prediction, genotype by environment interactions and spatial effect to improve prediction accuracy in yield data.
    Tsai HY; Cericola F; Edriss V; Andersen JR; Orabi J; Jensen JD; Jahoor A; Janss L; Jensen J
    PLoS One; 2020; 15(5):e0232665. PubMed ID: 32401769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in artificial intelligence, mechanistic models, and speed breeding offer exciting opportunities for precise and accelerated genomics-assisted breeding.
    Bhat JA; Feng X; Mir ZA; Raina A; Siddique KHM
    Physiol Plant; 2023; 175(4):e13969. PubMed ID: 37401892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic prediction in early selection stages using multi-year data in a hybrid rye breeding program.
    Bernal-Vasquez AM; Gordillo A; Schmidt M; Piepho HP
    BMC Genet; 2017 May; 18(1):51. PubMed ID: 28569139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing winter wheat prediction with genomics, phenomics and environmental data.
    Montesinos-López OA; Herr AW; Crossa J; Montesinos-López A; Carter AH
    BMC Genomics; 2024 May; 25(1):544. PubMed ID: 38822262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-driven approaches to improve water-use efficiency and drought resistance in crop plants.
    Sharma N; Raman H; Wheeler D; Kalenahalli Y; Sharma R
    Plant Sci; 2023 Nov; 336():111852. PubMed ID: 37659733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.