These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 36081569)
1. The value of combined PET/MRI, CT and clinical metabolic parameters in differentiating lung adenocarcinoma from squamous cell carcinoma. Tang X; Wu J; Liang J; Yuan C; Shi F; Ding Z Front Oncol; 2022; 12():991102. PubMed ID: 36081569 [TBL] [Abstract][Full Text] [Related]
2. Machine learning based on clinico-biological features integrated Ren C; Zhang J; Qi M; Zhang J; Zhang Y; Song S; Sun Y; Cheng J Eur J Nucl Med Mol Imaging; 2021 May; 48(5):1538-1549. PubMed ID: 33057772 [TBL] [Abstract][Full Text] [Related]
3. Development and validation of a radiomic nomogram based on pretherapy dual-energy CT for distinguishing adenocarcinoma from squamous cell carcinoma of the lung. Chen Z; Yi L; Peng Z; Zhou J; Zhang Z; Tao Y; Lin Z; He A; Jin M; Zuo M Front Oncol; 2022; 12():949111. PubMed ID: 36505773 [TBL] [Abstract][Full Text] [Related]
4. Positron Emission Tomography/Magnetic Resonance Imaging Radiomics in Predicting Lung Adenocarcinoma and Squamous Cell Carcinoma. Tang X; Liang J; Xiang B; Yuan C; Wang L; Zhu B; Ge X; Fang M; Ding Z Front Oncol; 2022; 12():803824. PubMed ID: 35186742 [TBL] [Abstract][Full Text] [Related]
5. A subregion-based positron emission tomography/computed tomography (PET/CT) radiomics model for the classification of non-small cell lung cancer histopathological subtypes. Shen H; Chen L; Liu K; Zhao K; Li J; Yu L; Ye H; Zhu W Quant Imaging Med Surg; 2021 Jul; 11(7):2918-2932. PubMed ID: 34249623 [TBL] [Abstract][Full Text] [Related]
6. Additional value of metabolic parameters to PET/CT-based radiomics nomogram in predicting lymphovascular invasion and outcome in lung adenocarcinoma. Nie P; Yang G; Wang N; Yan L; Miao W; Duan Y; Wang Y; Gong A; Zhao Y; Wu J; Zhang C; Wang M; Cui J; Yu M; Li D; Sun Y; Wang Y; Wang Z Eur J Nucl Med Mol Imaging; 2021 Jan; 48(1):217-230. PubMed ID: 32451603 [TBL] [Abstract][Full Text] [Related]
7. Stage-Specific PET Radiomic Prediction Model for the Histological Subtype Classification of Non-Small-Cell Lung Cancer. Ji Y; Qiu Q; Fu J; Cui K; Chen X; Xing L; Sun X Cancer Manag Res; 2021; 13():307-317. PubMed ID: 33469373 [TBL] [Abstract][Full Text] [Related]
8. Dual-energy CT Radiomics Combined with Quantitative Parameters for Differentiating Lung Adenocarcinoma From Squamous Cell Carcinoma: A Dual-center Study. Lin Z; Liu Y; Xia C; Huang P; Peng Z; Yi L; Wang Y; Yu X; Fan B; Zuo M Acad Radiol; 2024 Sep; ():. PubMed ID: 39327138 [TBL] [Abstract][Full Text] [Related]
9. Use of radiomics based on Zhou Y; Ma XL; Zhang T; Wang J; Zhang T; Tian R Eur J Nucl Med Mol Imaging; 2021 Aug; 48(9):2904-2913. PubMed ID: 33547553 [TBL] [Abstract][Full Text] [Related]
10. A clinically practical radiomics-clinical combined model based on PET/CT data and nomogram predicts EGFR mutation in lung adenocarcinoma. Chang C; Zhou S; Yu H; Zhao W; Ge Y; Duan S; Wang R; Qian X; Lei B; Wang L; Liu L; Ruan M; Yan H; Sun X; Xie W Eur Radiol; 2021 Aug; 31(8):6259-6268. PubMed ID: 33544167 [TBL] [Abstract][Full Text] [Related]
11. CT radiomics analysis of lung cancers: Differentiation of squamous cell carcinoma from adenocarcinoma, a correlative study with FDG uptake. Tomori Y; Yamashiro T; Tomita H; Tsubakimoto M; Ishigami K; Atsumi E; Murayama S Eur J Radiol; 2020 Jul; 128():109032. PubMed ID: 32361604 [TBL] [Abstract][Full Text] [Related]
12. Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions. Kirienko M; Cozzi L; Rossi A; Voulaz E; Antunovic L; Fogliata A; Chiti A; Sollini M Eur J Nucl Med Mol Imaging; 2018 Sep; 45(10):1649-1660. PubMed ID: 29623375 [TBL] [Abstract][Full Text] [Related]
13. Evaluating Histological Subtypes Classification of Primary Lung Cancers on Unenhanced Computed Tomography Based on Random Forest Model. Huang J; He W; Xu H; Yang S; Dai J; Guo W; Zeng M J Healthc Eng; 2023; 2023():8964676. PubMed ID: 36794098 [TBL] [Abstract][Full Text] [Related]
14. A CT-based radiomics nomogram for differentiation of squamous cell carcinoma and non-Hodgkin's lymphoma of the palatine tonsil. Dong C; Zheng YM; Li J; Wu ZJ; Yang ZT; Li XL; Xu WJ; Hao DP Eur Radiol; 2022 Jan; 32(1):243-253. PubMed ID: 34236464 [TBL] [Abstract][Full Text] [Related]
15. Histologic subtype classification of non-small cell lung cancer using PET/CT images. Han Y; Ma Y; Wu Z; Zhang F; Zheng D; Liu X; Tao L; Liang Z; Yang Z; Li X; Huang J; Guo X Eur J Nucl Med Mol Imaging; 2021 Feb; 48(2):350-360. PubMed ID: 32776232 [TBL] [Abstract][Full Text] [Related]
16. Preliminary comparison of diffusion-weighted MRI and PET/CT in predicting histological type and malignancy of lung cancer. Liu LP; Zhang XX; Cui LB; Li J; Yang JL; Yang HN; Zhang Y; Zhou Y; Tang X; Qi S; Fang Y; Zhang J; Yin H Clin Respir J; 2017 Mar; 11(2):151-158. PubMed ID: 25918835 [TBL] [Abstract][Full Text] [Related]
17. MR imaging of thymomas: a combined radiomics nomogram to predict histologic subtypes. Xiao G; Hu YC; Ren JL; Qin P; Han JC; Qu XY; Rong WC; Yan WQ; Tian Q; Han Y; Wang WP; Wang SM; Ma J; Wang W; Cui GB Eur Radiol; 2021 Jan; 31(1):447-457. PubMed ID: 32700020 [TBL] [Abstract][Full Text] [Related]
18. Wang L; Li T; Hong J; Zhang M; Ouyang M; Zheng X; Tang K Quant Imaging Med Surg; 2021 Jan; 11(1):215-225. PubMed ID: 33392023 [TBL] [Abstract][Full Text] [Related]
19. Integrating manual diagnosis into radiomics for reducing the false positive rate of Kang F; Mu W; Gong J; Wang S; Li G; Li G; Qin W; Tian J; Wang J Eur J Nucl Med Mol Imaging; 2019 Dec; 46(13):2770-2779. PubMed ID: 31321483 [TBL] [Abstract][Full Text] [Related]
20. Intra-tumoural heterogeneity characterization through texture and colour analysis for differentiation of non-small cell lung carcinoma subtypes. Ma Y; Feng W; Wu Z; Liu M; Zhang F; Liang Z; Cui C; Huang J; Li X; Guo X Phys Med Biol; 2018 Aug; 63(16):165018. PubMed ID: 30051884 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]