These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36082210)

  • 1. Engineering Liquid-Vapor Phase Transition for Refreshable Haptic Interfaces.
    Wang WD; Ding Z; Lee Y; Han X
    Research (Wash D C); 2022; 2022():9839815. PubMed ID: 36082210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enabling portable multiple-line refreshable Braille displays with electroactive elastomers.
    Frediani G; Busfield J; Carpi F
    Med Eng Phys; 2018 Oct; 60():86-93. PubMed ID: 30082203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 2D Refreshable Braille Display Based on a Stiffness Variable Polymer and Pneumatic Actuation.
    Xie Z; Kim J; Peng Z; Qiu Y; Pei Q
    Proc SPIE Int Soc Opt Eng; 2021 Mar; 11587():. PubMed ID: 35310682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haptic and Somesthetic Communication in Sexual Medicine.
    Moscatelli A; Nimbi FM; Ciotti S; Jannini EA
    Sex Med Rev; 2021 Apr; 9(2):267-279. PubMed ID: 32690471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Validation of the Readable Device: A Single-Cell Electromagnetic Refreshable Braille Display.
    Bettelani GC; Averta G; Catalano MG; Leporini B; Bianchi M
    IEEE Trans Haptics; 2020; 13(1):239-245. PubMed ID: 32012027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Analysis of High-Resolution Electrostatic Adhesive Brakes Towards Static Refreshable 2.5D Tactile Shape Display.
    Zhang K; Gonzalez EJ; Guo J; Follmer S
    IEEE Trans Haptics; 2019; 12(4):470-482. PubMed ID: 31545743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Theoretical Framework of Haptic Processing in Automotive User Interfaces and Its Implications on Design and Engineering.
    Breitschaft SJ; Clarke S; Carbon CC
    Front Psychol; 2019; 10():1470. PubMed ID: 31402879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Where's My Button? Evaluating the User Experience of Surface Haptics in Featureless Automotive User Interfaces.
    Breitschaft SJ; Pastukhov A; Carbon CC
    IEEE Trans Haptics; 2022; 15(2):292-303. PubMed ID: 34826298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survey of Pseudo-Haptics: Haptic Feedback Design and Application Proposals.
    Ujitoko Y; Ban Y
    IEEE Trans Haptics; 2021; 14(4):699-711. PubMed ID: 33950845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Haptic Fidelity Framework: A Qualitative Overview and Categorization of Cutaneous-Based Haptic Technologies Through Fidelity.
    Breitschaft SJ; Heijboer S; Shor D; Tempelman E; Vink P; Carbon CC
    IEEE Trans Haptics; 2022; 15(2):232-245. PubMed ID: 35180084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haptic-assistive technologies for audition and vision sensory disabilities.
    Sorgini F; Caliò R; Carrozza MC; Oddo CM
    Disabil Rehabil Assist Technol; 2018 May; 13(4):394-421. PubMed ID: 29017361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic Review of Virtual Haptics in Surgical Simulation: A Valid Educational Tool?
    Rangarajan K; Davis H; Pucher PH
    J Surg Educ; 2020; 77(2):337-347. PubMed ID: 31564519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TouchScope: A Passive-Haptic Device to Investigate Tactile Perception Using a Refreshable Braille Display.
    Baciero A; Perea M; Duñabeitia JA; Gómez P
    J Cogn; 2023; 6(1):21. PubMed ID: 37152833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a pneumatic balloon actuator for use in refreshable Braille displays.
    Fan RE; Feinman AM; Wottawa C; King CH; Franco ML; Dutson EP; Grundfest WS; Culjat MO
    Stud Health Technol Inform; 2009; 142():94-6. PubMed ID: 19377122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Survey on the Use of Haptic Feedback for Brain-Computer Interfaces and Neurofeedback.
    Fleury M; Lioi G; Barillot C; Lécuyer A
    Front Neurosci; 2020; 14():528. PubMed ID: 32655347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low voltage-powered soft electromechanical stimulation patch for haptics feedback in human-machine interfaces.
    Qiu W; Zhong J; Jiang T; Li Z; Yao M; Shao Z; Cheng Q; Liang J; Wang D; Peng Y; He P; Bogy DB; Zhang M; Wang X; Lin L
    Biosens Bioelectron; 2021 Dec; 193():113616. PubMed ID: 34543862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding Graphics on a Scalable Latching Assistive Haptic Display Using a Shape Memory Polymer Membrane.
    Besse N; Rosset S; Zarate JJ; Ferrari E; Brayda L; Shea H
    IEEE Trans Haptics; 2018; 11(1):30-38. PubMed ID: 29611811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudo-haptics and self-haptics for freehand mid-air text entry in VR.
    Kim W; Xiong S
    Appl Ergon; 2022 Oct; 104():103819. PubMed ID: 35687993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of an augmented virtual reality and haptic control interface for psychomotor training.
    Kaber D; Tupler LA; Clamann M; Gil GH; Zhu B; Swangnetr M; Jeon W; Zhang Y; Qin X; Ma W; Lee YS
    Assist Technol; 2014; 26(1):51-60. PubMed ID: 24800454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Soft Actuator from Fast Swelling Macroporous PNIPAM Gels for Smart Braille Device Applications in Haptic Technology.
    Yilmaz RB; Chaabane Y; Mansard V
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7340-7352. PubMed ID: 36706224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.