These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36082471)

  • 21. Stress relaxation and recovery in tendon and ligament: experiment and modeling.
    Duenwald SE; Vanderby R; Lakes RS
    Biorheology; 2010; 47(1):1-14. PubMed ID: 20448294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Viscoelasticity of esophageal tissue and application of a QLV model.
    Yang W; Fung TC; Chian KS; Chong CK
    J Biomech Eng; 2006 Dec; 128(6):909-16. PubMed ID: 17154693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A discrete spectral analysis for determining quasi-linear viscoelastic properties of biological materials.
    Babaei B; Abramowitch SD; Elson EL; Thomopoulos S; Genin GM
    J R Soc Interface; 2015 Dec; 12(113):20150707. PubMed ID: 26609064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A constituent-based model for the nonlinear viscoelastic behavior of ligaments.
    Vena P; Gastaldi D; Contro R
    J Biomech Eng; 2006 Jun; 128(3):449-57. PubMed ID: 16706595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of different constitutive models to characterize the viscoelastic properties of human abdominal adipose tissue. A pilot study.
    Calvo-Gallego JL; Domínguez J; Gómez Cía T; Gómez Ciriza G; Martínez-Reina J
    J Mech Behav Biomed Mater; 2018 Apr; 80():293-302. PubMed ID: 29455039
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching.
    Babaei B; Velasquez-Mao AJ; Thomopoulos S; Elson EL; Abramowitch SD; Genin GM
    J Mech Behav Biomed Mater; 2017 May; 69():193-202. PubMed ID: 28088071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quasi-linear viscoelastic properties of the human medial patello-femoral ligament.
    Criscenti G; De Maria C; Sebastiani E; Tei M; Placella G; Speziali A; Vozzi G; Cerulli G
    J Biomech; 2015 Dec; 48(16):4297-302. PubMed ID: 26573904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An evaluation of the quasi-linear viscoelastic properties of the healing medial collateral ligament in a goat model.
    Abramowitch SD; Woo SL; Clineff TD; Debski RE
    Ann Biomed Eng; 2004 Mar; 32(3):329-35. PubMed ID: 15098537
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural Model for Viscoelastic Properties of Pericardial Bioprosthetic Valves.
    Rassoli A; Fatouraee N; Guidoin R
    Artif Organs; 2018 Jun; 42(6):630-639. PubMed ID: 29602267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microstructural properties and mechanics vary between bundles of the human anterior cruciate ligament during stress-relaxation.
    Castile RM; Skelley NW; Babaei B; Brophy RH; Lake SP
    J Biomech; 2016 Jan; 49(1):87-93. PubMed ID: 26643578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity.
    Doehring TC; Freed AD; Carew EO; Vesely I
    J Biomech Eng; 2005 Aug; 127(4):700-8. PubMed ID: 16121541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo soft tissue compressive properties of the human hand.
    Spartacus V; Shojaeizadeh M; Raffault V; Shoults J; Van Wieren K; Sparrey CJ
    PLoS One; 2021; 16(12):e0261008. PubMed ID: 34898632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compressive mechanical characterization of non-human primate spinal cord white matter.
    Jannesar S; Allen M; Mills S; Gibbons A; Bresnahan JC; Salegio EA; Sparrey CJ
    Acta Biomater; 2018 Jul; 74():260-269. PubMed ID: 29729417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix.
    Babaei B; Velasquez-Mao AJ; Pryse KM; McConnaughey WB; Elson EL; Genin GM
    J Mech Behav Biomed Mater; 2018 Aug; 84():198-207. PubMed ID: 29793157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Constitutive model for brain tissue under finite compression.
    Laksari K; Shafieian M; Darvish K
    J Biomech; 2012 Feb; 45(4):642-6. PubMed ID: 22281404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Micromechanical modeling of rate-dependent behavior of Connective tissues.
    Fallah A; Ahmadian MT; Firozbakhsh K; Aghdam MM
    J Theor Biol; 2017 Mar; 416():119-128. PubMed ID: 28069450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quasi-non-linear deformation modeling of a human liver based on artificial and experimental data.
    Dogan F; Celebi MS
    Int J Med Robot; 2016 Sep; 12(3):410-20. PubMed ID: 26459224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mathematical model for viscoelastic properties of biological soft tissue.
    Xi M; Yun G; Narsu B
    Theory Biosci; 2022 Feb; 141(1):13-25. PubMed ID: 35112309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantifying fibrosis in venous disease: mechanical properties of lipodermatosclerotic and healthy tissue.
    Geyer MJ; Brienza DM; Chib V; Wang J
    Adv Skin Wound Care; 2004 Apr; 17(3):131-42. PubMed ID: 15194975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of in vivo and ex vivo viscoelastic behavior of the spinal cord.
    Ramo NL; Shetye SS; Streijger F; Lee JHT; Troyer KL; Kwon BK; Cripton P; Puttlitz CM
    Acta Biomater; 2018 Mar; 68():78-89. PubMed ID: 29288084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.