These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 3608251)
21. In vivo assessment of intact parathyroid hormone adsorption by different dialysis membranes during hemodialysis. Balducci A; Coen G; Manni M; Perruzza I; Fassino V; Sardella D; Grandi F Artif Organs; 2004 Dec; 28(12):1067-75. PubMed ID: 15554934 [TBL] [Abstract][Full Text] [Related]
22. [Hemodiafiltration using a polysulfone membrane, its ultrafiltration characteristics and biocompatibility]. Iarmolinskiĭ IS; Stetsiuk EA; Iarmagomedov AA Urol Nefrol (Mosk); 1987; (2):45-9. PubMed ID: 3590419 [No Abstract] [Full Text] [Related]
23. Induction of IL-1 during hemodialysis: transmembrane passage of intact endotoxins (LPS). Laude-Sharp M; Caroff M; Simard L; Pusineri C; Kazatchkine MD; Haeffner-Cavaillon N Kidney Int; 1990 Dec; 38(6):1089-94. PubMed ID: 2127434 [TBL] [Abstract][Full Text] [Related]
24. [Permeability of dialysis membranes for endotoxins. Clinical and experimental results]. Passavanti G; Buongiorno E; De Fino G; Fumarola D; Coratelli P Cas Lek Cesk; 1990 Mar; 129(10):289-91. PubMed ID: 2340547 [TBL] [Abstract][Full Text] [Related]
25. Does an alteration of dialyzer design and geometry affect biocompatibility parameters? Opatrný K; Krouzzecký A; Polanská K; Mares J; Tomsů M; Bowry SK; Vienken J Hemodial Int; 2006 Apr; 10(2):201-8. PubMed ID: 16623675 [TBL] [Abstract][Full Text] [Related]
26. Transmembrane passage of cytokine-inducing bacterial products across new and reprocessed polysulfone dialyzers. Sundaram S; Barrett TW; Meyer KB; Perrella C; Neto MC; King AJ; Pereira BJ J Am Soc Nephrol; 1996 Oct; 7(10):2183-91. PubMed ID: 8915979 [TBL] [Abstract][Full Text] [Related]
27. Pyrogen transfer across high- and low-flux hemodialysis membranes. Weber V; Linsberger I; Rossmanith E; Weber C; Falkenhagen D Artif Organs; 2004 Feb; 28(2):210-7. PubMed ID: 14961961 [TBL] [Abstract][Full Text] [Related]
28. Pyrogen retention by the Asahi APS-650 polysulfone dialyzer during in vitro dialysis with whole human donor blood. Linnenweber S; Lonnemann G ASAIO J; 2000; 46(4):444-7. PubMed ID: 10926143 [TBL] [Abstract][Full Text] [Related]
29. [A study of the Limulus amebocyte lysate-reactive substances flushed from cellulose hemodialysis membranes]. Strokov AG; Baeva LB; Levitskiĭ ER; Tiagny-Riadno LI Urol Nefrol (Mosk); 1993; (3):41-4. PubMed ID: 7941162 [TBL] [Abstract][Full Text] [Related]
30. Bacterial challenge of NISSHO ultrafilter ETF 609: results of in vitro testing. Krautzig S; Lonnemann G; Shaldon S; Koch KM Artif Organs; 1996 Jul; 20(7):798-800. PubMed ID: 8828771 [TBL] [Abstract][Full Text] [Related]
31. The influence of cuprophan and polysulfone membranes on dialyzer reusability and intradialytic complications. Kadiri S; Kehinde Z; Arije A; Salako BL Afr J Med Med Sci; 2001 Sep; 30(3):191-4. PubMed ID: 14510127 [TBL] [Abstract][Full Text] [Related]
32. Increased binding of beta-2-microglobulin to blood cells in dialysis patients treated with high-flux dialyzers compared with low-flux membranes contributed to reduced beta-2-microglobulin concentrations. Results of a cross-over study. Traut M; Haufe CC; Eismann U; Deppisch RM; Stein G; Wolf G Blood Purif; 2007; 25(5-6):432-40. PubMed ID: 17957097 [TBL] [Abstract][Full Text] [Related]
33. Colchicine clearance by high-flux polysulfone dialyzers. Ben-Chetrit E; Backenroth R; Levy M Arthritis Rheum; 1998 Apr; 41(4):749-50. PubMed ID: 9550491 [No Abstract] [Full Text] [Related]
34. High-permeable membranes and hypersensitivity-like reactions: role of dialysis fluid contamination. Bigazzi R; Atti M; Baldari G Blood Purif; 1990; 8(4):190-8. PubMed ID: 2085427 [TBL] [Abstract][Full Text] [Related]
35. In vitro studies of endotoxin transfer across cellulosic and noncellulosic dialysis membranes. II. Interleukin-1 production. Herbelin A; Ureña P; Man NK; Drüeke T; Descamps-Latscha B Contrib Nephrol; 1989; 74():79-85. PubMed ID: 2702150 [No Abstract] [Full Text] [Related]
36. Comment on middle molecule removal in low-flux polysulfone dialyzers: impact of flows and surface area on whole-body and dialyzer clearances. Polaschegg HD Hemodial Int; 2006 Apr; 10(2):215-6; author reply 216. PubMed ID: 16623678 [No Abstract] [Full Text] [Related]
37. Ultrafiltration using the polysulfone membrane to reduce the cytokine-inducing activity of contaminated dialysate. Lonnemann G; Schindler R Clin Nephrol; 1994 Jul; 42 Suppl 1():S37-43. PubMed ID: 7923982 [No Abstract] [Full Text] [Related]
38. Retention of limulus amoebocyte lysate reactive bacterial products by polysulfone dialyzers is affected by the type of disinfectant. Cappelli G; Inguaggiato P; Perrone S; Gervasio R; Tetta C; Scialoia MG; Albertazzi A ASAIO J; 1998; 44(5):M587-91. PubMed ID: 9804501 [TBL] [Abstract][Full Text] [Related]
39. In vitro evaluation of the hydraulic permeability of polysulfone dialysers. Eloot S; De Wachter D; Vienken J; Pohlmeier R; Verdonck P Int J Artif Organs; 2002 Mar; 25(3):210-6. PubMed ID: 11999193 [TBL] [Abstract][Full Text] [Related]
40. Clinical characterization of Dicea a new cellulose membrane for haemodialysis. Hoenich NA; Woffindin C; Cox PJ; Goldfinch M; Roberts SJ Clin Nephrol; 1997 Oct; 48(4):253-9. PubMed ID: 9352161 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]