These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 36082529)

  • 21. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of Confined Optical Phonons in Exciton Generation in Spherical Quantum Dot.
    Singh R; Dutta M; Stroscio MA
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoscale control of phonon excitations in graphene.
    Kim HW; Ko W; Ku J; Jeon I; Kim D; Kwon H; Oh Y; Ryu S; Kuk Y; Hwang SW; Suh H
    Nat Commun; 2015 Jun; 6():7528. PubMed ID: 26109454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering dissipation with phononic spectral hole burning.
    Behunin RO; Kharel P; Renninger WH; Rakich PT
    Nat Mater; 2017 Mar; 16(3):315-321. PubMed ID: 27941809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GaAs/GaP Superlattice Nanowires for Tailoring Phononic Properties at the Nanoscale: Implications for Thermal Engineering.
    K Sivan A; Abad B; Albrigi T; Arif O; Trautvetter J; Ruiz Caridad A; Arya C; Zannier V; Sorba L; Rurali R; Zardo I
    ACS Appl Nano Mater; 2023 Oct; 6(19):18602-18613. PubMed ID: 37854853
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emergent Optical Phononic Modes upon Nanoscale Mesogenic Phase Transitions.
    Bolmatov D; Zhernenkov M; Sharpnack L; Agra-Kooijman DM; Kumar S; Suvorov A; Pindak R; Cai YQ; Cunsolo A
    Nano Lett; 2017 Jun; 17(6):3870-3876. PubMed ID: 28548861
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct Characterization of Thermal Nonequilibrium between Optical and Acoustic Phonons in Graphene Paper under Photon Excitation.
    Zobeiri H; Hunter N; Wang R; Wang T; Wang X
    Adv Sci (Weinh); 2021 Jun; 8(12):2004712. PubMed ID: 34194932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots.
    Vanacore GM; Hu J; Liang W; Bietti S; Sanguinetti S; Carbone F; Zewail AH
    Struct Dyn; 2017 Jul; 4(4):044034. PubMed ID: 28852685
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phononics of Graphene and Related Materials.
    Balandin AA
    ACS Nano; 2020 May; 14(5):5170-5178. PubMed ID: 32338870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chiral Phonons: Prediction, Verification, and Application.
    Wang T; Sun H; Li X; Zhang L
    Nano Lett; 2024 Apr; 24(15):4311-4318. PubMed ID: 38587210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Soft surfaces of nanomaterials enable strong phonon interactions.
    Bozyigit D; Yazdani N; Yarema M; Yarema O; Lin WM; Volk S; Vuttivorakulchai K; Luisier M; Juranyi F; Wood V
    Nature; 2016 Mar; 531(7596):618-22. PubMed ID: 26958836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bragg Coherent Diffractive Imaging of Zinc Oxide Acoustic Phonons at Picosecond Timescales.
    Ulvestad A; Cherukara MJ; Harder R; Cha W; Robinson IK; Soog S; Nelson S; Zhu D; Stephenson GB; Heinonen O; Jokisaari A
    Sci Rep; 2017 Aug; 7(1):9823. PubMed ID: 28852007
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visualizing Nonlinear Phononics in Layered ReSe
    Yu J; Han Y; Wang L; Xu F; Zhang H; Yu Y; Wu Q; Hu J
    J Phys Chem Lett; 2021 Jun; 12(21):5178-5184. PubMed ID: 34037407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanophononics: phonon engineering in nanostructures and nanodevices.
    Balandin AA
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1015-22. PubMed ID: 16108421
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering.
    Neogi S; Reparaz JS; Pereira LF; Graczykowski B; Wagner MR; Sledzinska M; Shchepetov A; Prunnila M; Ahopelto J; Sotomayor-Torres CM; Donadio D
    ACS Nano; 2015 Apr; 9(4):3820-8. PubMed ID: 25827287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-Dimensional Topological States of Phonons with Tunable Pseudospin Physics.
    Liu Y; Xu Y; Duan W
    Research (Wash D C); 2019; 2019():5173580. PubMed ID: 31549065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chirality selective magnon-phonon hybridization and magnon-induced chiral phonons in a layered zigzag antiferromagnet.
    Cui J; Boström EV; Ozerov M; Wu F; Jiang Q; Chu JH; Li C; Liu F; Xu X; Rubio A; Zhang Q
    Nat Commun; 2023 Jun; 14(1):3396. PubMed ID: 37296106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrafast magnetoacoustics in Galfenol nanostructures.
    Scherbakov AV; Linnik TL; Kukhtaruk SM; Yakovlev DR; Nadzeyka A; Rushforth AW; Akimov AV; Bayer M
    Photoacoustics; 2023 Dec; 34():100565. PubMed ID: 38058748
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.