These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 36082778)
41. Selective oxidation of benzyl alcohols to benzoic acid catalyzed by eco-friendly cobalt thioporphyrazine catalyst supported on silica-coated magnetic nanospheres. Li H; Cao L; Yang C; Zhang Z; Zhang B; Deng K J Environ Sci (China); 2017 Oct; 60():84-90. PubMed ID: 29031450 [TBL] [Abstract][Full Text] [Related]
42. Rhodium-catalyzed direct oxidative carbonylation of aromatic C-H bond with CO and alcohols. Guan ZH; Ren ZH; Spinella SM; Yu S; Liang YM; Zhang X J Am Chem Soc; 2009 Jan; 131(2):729-33. PubMed ID: 19099479 [TBL] [Abstract][Full Text] [Related]
43. Metal-Free Chemoselective Oxidative Dehomologation or Direct Oxidation of Alcohols: Implication for Biomass Conversion. Kim SM; Shin HY; Kim DW; Yang JW ChemSusChem; 2016 Feb; 9(3):241-5. PubMed ID: 26682633 [TBL] [Abstract][Full Text] [Related]
44. Single-flask synthesis of N-acylated indoles by catalytic dehydrogenative coupling with primary alcohols. Maki BE; Scheidt KA Org Lett; 2009 Apr; 11(7):1651-4. PubMed ID: 19320508 [TBL] [Abstract][Full Text] [Related]
45. Efficient and Highly Selective Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Bucky Nanodiamond. Lin Y; Wu KT; Yu L; Heumann S; Su DS ChemSusChem; 2017 Sep; 10(17):3497-3505. PubMed ID: 28665485 [TBL] [Abstract][Full Text] [Related]
46. Cu-catalyzed aerobic oxidative cyclizations of 3-N-hydroxyamino-1,2-propadienes with alcohols, thiols, and amines to form α-O-, S-, and N-substituted 4-methylquinoline derivatives. Sharma P; Liu RS Chemistry; 2015 Mar; 21(12):4590-4. PubMed ID: 25657028 [TBL] [Abstract][Full Text] [Related]
47. Diastereo- and Enantioselective Iridium Catalyzed Coupling of Vinyl Aziridines with Alcohols: Site-Selective Modification of Unprotected Diols and Synthesis of Substituted Piperidines. Wang G; Franke J; Ngo CQ; Krische MJ J Am Chem Soc; 2015 Jun; 137(24):7915-20. PubMed ID: 26074091 [TBL] [Abstract][Full Text] [Related]
48. A facile method for oxidation of primary alcohols to carboxylic acids and its application in glycosaminoglycan syntheses. Huang L; Teumelsan N; Huang X Chemistry; 2006 Jul; 12(20):5246-52. PubMed ID: 16637084 [TBL] [Abstract][Full Text] [Related]
49. Synthesis of 1,2-Amino Alcohols by Photoredox-Mediated Decarboxylative Coupling of α-Amino Acids and DNA-Conjugated Carbonyls. Wen H; Ge R; Qu Y; Sun J; Shi X; Cui W; Yan H; Zhang Q; An Y; Su W; Yang H; Kuai L; Satz AL; Peng X Org Lett; 2020 Dec; 22(24):9484-9489. PubMed ID: 33170713 [TBL] [Abstract][Full Text] [Related]
50. Enantioselective Synthesis of γ-Oxycarbonyl Motifs by Conjugate Addition of Photogenerated α-Alkoxy Radicals. Dong X; Li QY; Yoon TP Org Lett; 2021 Aug; 23(15):5703-5708. PubMed ID: 34296877 [TBL] [Abstract][Full Text] [Related]
51. Scope and mechanism in palladium-catalyzed isomerizations of highly substituted allylic, homoallylic, and alkenyl alcohols. Larionov E; Lin L; Guénée L; Mazet C J Am Chem Soc; 2014 Dec; 136(48):16882-94. PubMed ID: 25397681 [TBL] [Abstract][Full Text] [Related]
52. Regioselective esterification of vicinal diols on monosaccharide derivatives via Mitsunobu reactions. Wang G; Ella-Menye JR; St Martin M; Yang H; Williams K Org Lett; 2008 Oct; 10(19):4203-6. PubMed ID: 18759436 [TBL] [Abstract][Full Text] [Related]
53. Enantioselective Allylic C-H Oxidation of Terminal Olefins to Isochromans by Palladium(II)/Chiral Sulfoxide Catalysis. Ammann SE; Liu W; White MC Angew Chem Int Ed Engl; 2016 Aug; 55(33):9571-5. PubMed ID: 27376625 [TBL] [Abstract][Full Text] [Related]
54. Novel assembly of cyclic ethers by coupling alpha-chlorosulfides and alcohols. Inoue M; Wang GX; Wang J; Hirama M Org Lett; 2002 Oct; 4(20):3439-42. PubMed ID: 12323038 [TBL] [Abstract][Full Text] [Related]
55. Selective oxidation of alcohols in aqueous suspensions of rhodium ion-modified TiO2 photocatalysts under irradiation of visible light. Kitano S; Tanaka A; Hashimoto K; Kominami H Phys Chem Chem Phys; 2014 Jun; 16(24):12554-9. PubMed ID: 24832087 [TBL] [Abstract][Full Text] [Related]
56. TEMPO/HCl/NaNO2 catalyst: a transition-metal-free approach to efficient aerobic oxidation of alcohols to aldehydes and ketones under mild conditions. Wang X; Liu R; Jin Y; Liang X Chemistry; 2008; 14(9):2679-85. PubMed ID: 18293352 [TBL] [Abstract][Full Text] [Related]
57. Homocoupling versus reduction of radicals: an experimental and theoretical study of Ti(III)-mediated deoxygenation of activated alcohols. Prieto C; González Delgado JA; Arteaga JF; Jaraíz M; López-Pérez JL; Barrero AF Org Biomol Chem; 2015 Mar; 13(11):3462-9. PubMed ID: 25665946 [TBL] [Abstract][Full Text] [Related]
58. Scope and limitations of biocatalytic carbonyl reduction with white-rot fungi. Zhuk TS; Skorobohatko OS; Albuquerque W; Zorn H Bioorg Chem; 2021 Mar; 108():104651. PubMed ID: 33508677 [TBL] [Abstract][Full Text] [Related]
59. Lewis acid mediated tandem reaction of propargylic alcohols to tetrazoles involving C-O- and C-C-bond cleavage reactions and a C-N-bond formation. Song XR; Han YP; Qiu YF; Qiu ZH; Liu XY; Xu PF; Liang YM Chemistry; 2014 Sep; 20(38):12046-50. PubMed ID: 25111702 [TBL] [Abstract][Full Text] [Related]
60. Highly practical synthesis of nitriles and heterocycles from alcohols under mild conditions by aerobic double dehydrogenative catalysis. Yin W; Wang C; Huang Y Org Lett; 2013 Apr; 15(8):1850-3. PubMed ID: 23560642 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]