These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 36082794)
1. Theoretical investigation of a tetrazine based covalent organic framework as a promising anode material for sodium/calcium ion batteries. Das P; Ball B; Sarkar P Phys Chem Chem Phys; 2022 Sep; 24(36):21729-21739. PubMed ID: 36082794 [TBL] [Abstract][Full Text] [Related]
2. First principles study of a triazine-based covalent organic framework as a high-capacity anode material for Na/K-ion batteries. Liu S; Liu B; Yu M; Gao H; Guo H; Jiang D; Yang S; Wen Y; Wu Y Phys Chem Chem Phys; 2024 Jan; 26(2):1376-1384. PubMed ID: 38112129 [TBL] [Abstract][Full Text] [Related]
3. Density Functional Theory Study of Bilayer Borophene-Based Anode Material for Rechargeable Lithium Ion Batteries. Gao N; Ye P; Chen J; Xiao J; Yang X Langmuir; 2023 Jul; 39(29):10270-10279. PubMed ID: 37439717 [TBL] [Abstract][Full Text] [Related]
4. Nb Wang Y; Tian W; Zhang H; Wang Y Phys Chem Chem Phys; 2021 Jun; 23(21):12288-12295. PubMed ID: 34018511 [TBL] [Abstract][Full Text] [Related]
5. Borophosphene as a promising Dirac anode with large capacity and high-rate capability for sodium-ion batteries. Zhang Y; Zhang EH; Xia MG; Zhang SL Phys Chem Chem Phys; 2020 Sep; 22(36):20851-20857. PubMed ID: 32914819 [TBL] [Abstract][Full Text] [Related]
6. Graphether: a reversible and high-capacity anode material for sodium-ion batteries with ultrafast directional Na-ion diffusion. Ye XJ; Zhu GL; Meng L; Guo YD; Liu CS Phys Chem Chem Phys; 2021 Jun; 23(21):12371-12375. PubMed ID: 34027526 [TBL] [Abstract][Full Text] [Related]
7. Sc Lv X; Wei W; Sun Q; Yu L; Huang B; Dai Y Chemphyschem; 2017 Jun; 18(12):1627-1634. PubMed ID: 28383808 [TBL] [Abstract][Full Text] [Related]
8. Monolayer H-MoS Lu B; Liu X; Qu J; Li Z Nanoscale Adv; 2022 Sep; 4(18):3756-3763. PubMed ID: 36133320 [TBL] [Abstract][Full Text] [Related]
9. Metallic FeSe monolayer as an anode material for Li and non-Li ion batteries: a DFT study. Lv X; Li F; Gong J; Gu J; Lin S; Chen Z Phys Chem Chem Phys; 2020 Apr; 22(16):8902-8912. PubMed ID: 32289818 [TBL] [Abstract][Full Text] [Related]
10. Monolayer α-beryllene as an anode material for magnesium ion batteries with high capacity and low diffusion energy barrier. Gao Q; Ye XJ; Liu CS Phys Chem Chem Phys; 2023 Feb; 25(8):6519-6526. PubMed ID: 36786369 [TBL] [Abstract][Full Text] [Related]
11. Layered Na Zuo C; Shao Y; Li M; Zhang W; Zhu D; Tang W; Hu J; Liu P; Xiong F; An Q ACS Appl Mater Interfaces; 2024 Jul; 16(26):33733-33739. PubMed ID: 38915250 [TBL] [Abstract][Full Text] [Related]
12. S-functionalized 2D V Wang Y; Ma N; Zhang Y; Liang B; Zhao J; Fan J Phys Chem Chem Phys; 2023 Feb; 25(5):4015-4024. PubMed ID: 36649114 [TBL] [Abstract][Full Text] [Related]
13. Bismuthene as a novel anode material of magnesium/zinc ion batteries with high capacity and stability: a DFT calculation. Isa Khan M; Khurshid M; Alarfaji SS; Majid A Phys Chem Chem Phys; 2024 Oct; 26(42):27007-27018. PubMed ID: 39422900 [TBL] [Abstract][Full Text] [Related]
14. Two-dimensional graphene+ as an anode material for calcium-ion batteries with ultra-high capacity: a first-principles study. Yang T; Ma TC; Ye XJ; Zheng XH; Jia R; Yan XH; Liu CS Phys Chem Chem Phys; 2024 Jan; 26(5):4589-4596. PubMed ID: 38250962 [TBL] [Abstract][Full Text] [Related]
15. Two-dimensional covalent organic frameworks made of triquinoxalinylene derivatives are promising anodes for high-performance lithium and sodium ion batteries. Xu T; Yang Y; Liu T; Jing Y RSC Adv; 2023 Nov; 13(49):34724-34732. PubMed ID: 38035235 [TBL] [Abstract][Full Text] [Related]
16. Investigation of N Kasprzak GT; Jarosik MW; Durajski AP Sci Rep; 2024 May; 14(1):11180. PubMed ID: 38755241 [TBL] [Abstract][Full Text] [Related]
17. B Xiong Y; Ma N; Wang Y; Wang T; Luo S; Fan J Phys Chem Chem Phys; 2023 May; 25(18):12854-12862. PubMed ID: 37165890 [TBL] [Abstract][Full Text] [Related]
18. Ab initio study of sodium diffusion and adsorption on boron-doped graphyne as promising anode material in sodium-ion batteries. Nasrollahpour M; Vafaee M; Hosseini MR; Iravani H Phys Chem Chem Phys; 2018 Dec; 20(47):29889-29895. PubMed ID: 30468442 [TBL] [Abstract][Full Text] [Related]
19. Porous hydrogen substituted graphyne as a promising anode for lithium-ion batteries. Wan B; He Q; Wan XG; Li Q RSC Adv; 2021 Jun; 11(36):22079-22087. PubMed ID: 35480837 [TBL] [Abstract][Full Text] [Related]
20. Arsenene monolayer as an outstanding anode material for (Li/Na/Mg)-ion batteries: density functional theory. Benzidi H; Lakhal M; Garara M; Abdellaoui M; Benyoussef A; El Kenz A; Mounkachi O Phys Chem Chem Phys; 2019 Sep; 21(36):19951-19962. PubMed ID: 31475997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]