These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 36082872)
21. Esculentin-1a Derived Antipseudomonal Peptides: Limited Induction of Resistance and Synergy with Aztreonam. Casciaro B; Loffredo MR; Luca V; Verrusio W; Cacciafesta M; Mangoni ML Protein Pept Lett; 2018; 25(12):1155-1162. PubMed ID: 30381056 [TBL] [Abstract][Full Text] [Related]
22. Antimicrobial Peptide Exposure Selects for Resistant and Fit Stenotrophomonas maltophilia Mutants That Show Cross-Resistance to Antibiotics. Blanco P; Hjort K; Martínez JL; Andersson DI mSphere; 2020 Sep; 5(5):. PubMed ID: 32999081 [TBL] [Abstract][Full Text] [Related]
23. Novel cationic peptide TP359 down-regulates the expression of outer membrane biogenesis genes in Pseudomonas aeruginosa: a potential TP359 anti-microbial mechanism. Dosunmu EF; Chaudhari AA; Bawage S; Bakeer MK; Owen DR; Singh SR; Dennis VA; Pillai SR BMC Microbiol; 2016 Aug; 16(1):192. PubMed ID: 27549081 [TBL] [Abstract][Full Text] [Related]
24. Synthesis and anti-pseudomonal activity of new ß-Ala modified analogues of the antimicrobial peptide anoplin. Zhong C; Zhu Y; Zhu N; Liu T; Gou S; Zhang F; Yao J; Xie J; Ni J Int J Med Microbiol; 2020 Jul; 310(5):151433. PubMed ID: 32654770 [TBL] [Abstract][Full Text] [Related]
25. An Overview of Frog Skin-Derived Esc Peptides: Promising Multifunctional Weapons against Mangoni ML; Loffredo MR; Casciaro B; Ferrera L; Cappiello F Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673985 [TBL] [Abstract][Full Text] [Related]
26. Discovery and Mechanism of Action of a Novel Antimicrobial Peptide from an Earthworm. Wu Y; Deng S; Wang X; Thunders M; Qiu J; Li Y Microbiol Spectr; 2023 Feb; 11(1):e0320622. PubMed ID: 36602379 [TBL] [Abstract][Full Text] [Related]
27. Combining topology and sequence design for the discovery of potent antimicrobial peptide dendrimers against multidrug-resistant Pseudomonas aeruginosa. Stach M; Siriwardena TN; Köhler T; van Delden C; Darbre T; Reymond JL Angew Chem Int Ed Engl; 2014 Nov; 53(47):12827-31. PubMed ID: 25346278 [TBL] [Abstract][Full Text] [Related]
28. Salt-resistant short antimicrobial peptides. Mohanram H; Bhattacharjya S Biopolymers; 2016 May; 106(3):345-56. PubMed ID: 26849911 [TBL] [Abstract][Full Text] [Related]
29. Rationally designed antimicrobial peptides: Insight into the mechanism of eleven residue peptides against microbial infections. Pandit G; Biswas K; Ghosh S; Debnath S; Bidkar AP; Satpati P; Bhunia A; Chatterjee S Biochim Biophys Acta Biomembr; 2020 Apr; 1862(4):183177. PubMed ID: 31954105 [TBL] [Abstract][Full Text] [Related]
30. Designing antimicrobial peptides using deep learning and molecular dynamic simulations. Cao Q; Ge C; Wang X; Harvey PJ; Zhang Z; Ma Y; Wang X; Jia X; Mobli M; Craik DJ; Jiang T; Yang J; Wei Z; Wang Y; Chang S; Yu R Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36857616 [TBL] [Abstract][Full Text] [Related]
31. A short D-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Mohamed MF; Brezden A; Mohammad H; Chmielewski J; Seleem MN Sci Rep; 2017 Jul; 7(1):6953. PubMed ID: 28761101 [TBL] [Abstract][Full Text] [Related]
32. Synergistic and antibiofilm activity of the antimicrobial peptide P5 against carbapenem-resistant Pseudomonas aeruginosa. Martinez M; Gonçalves S; Felício MR; Maturana P; Santos NC; Semorile L; Hollmann A; Maffía PC Biochim Biophys Acta Biomembr; 2019 Jul; 1861(7):1329-1337. PubMed ID: 31095945 [TBL] [Abstract][Full Text] [Related]
33. Antimicrobial Peptides from Human Microbiome Against Multidrug Efflux Pump of Pseudomonas aeruginosa: a Computational Study. Mulpuru V; Mishra N Probiotics Antimicrob Proteins; 2022 Feb; 14(1):180-188. PubMed ID: 35040024 [TBL] [Abstract][Full Text] [Related]
34. Enhanced efficacy of the engineered antimicrobial peptide WLBU2 via direct airway delivery in a murine model of Pseudomonas aeruginosa pneumonia. Chen C; Deslouches B; Montelaro RC; Di YP Clin Microbiol Infect; 2018 May; 24(5):547.e1-547.e8. PubMed ID: 28882728 [TBL] [Abstract][Full Text] [Related]
35. Microbiome-derived antimicrobial peptides offer therapeutic solutions for the treatment of Pseudomonas aeruginosa infections. Mulkern AJ; Oyama LB; Cookson AR; Creevey CJ; Wilkinson TJ; Olleik H; Maresca M; da Silva GC; Fontes PP; Bazzolli DMS; Mantovani HC; Damaris BF; Mur LAJ; Huws SA NPJ Biofilms Microbiomes; 2022 Aug; 8(1):70. PubMed ID: 36038584 [TBL] [Abstract][Full Text] [Related]
36. Role of positively charged residues on the polar and non-polar faces of amphipathic α-helical antimicrobial peptides on specificity and selectivity for Gram-negative pathogens. Jiang Z; Mant CT; Vasil M; Hodges RS Chem Biol Drug Des; 2018 Jan; 91(1):75-92. PubMed ID: 28636788 [TBL] [Abstract][Full Text] [Related]
37. Antibacterial, anti-biofilm and in vivo activities of the antimicrobial peptides P5 and P6.2. Martínez M; Polizzotto A; Flores N; Semorile L; Maffía PC Microb Pathog; 2020 Feb; 139():103886. PubMed ID: 31778756 [TBL] [Abstract][Full Text] [Related]
38. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Dosler S; Karaaslan E Peptides; 2014 Dec; 62():32-7. PubMed ID: 25285879 [TBL] [Abstract][Full Text] [Related]
39. Rescuing humanity by antimicrobial peptides against colistin-resistant bacteria. Moghadam MT; Mojtahedi A; Moghaddam MM; Fasihi-Ramandi M; Mirnejad R Appl Microbiol Biotechnol; 2022 Jun; 106(11):3879-3893. PubMed ID: 35604438 [TBL] [Abstract][Full Text] [Related]
40. BamA-targeted antimicrobial peptide design for enhanced efficacy and reduced toxicity. Yang L; Luo M; Liu Z; Li Y; Lin Z; Geng S; Wang Y Amino Acids; 2023 Oct; 55(10):1317-1331. PubMed ID: 37670010 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]