BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36082930)

  • 1. Mode-tunable, micro/nanoscale electrohydrodynamic deposition techniques for optoelectronic device fabrication.
    Duan Y; Li H; Yang W; Shao Z; Wang Q; Huang Y; Yin Z
    Nanoscale; 2022 Sep; 14(37):13452-13472. PubMed ID: 36082930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution Patterning Using Two Modes of Electrohydrodynamic Jet: Drop on Demand and Near-field Electrospinning.
    Phung TH; Oh S; Kwon KS
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30059021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inkjet-printed optoelectronics.
    Zhan Z; An J; Wei Y; Tran VT; Du H
    Nanoscale; 2017 Jan; 9(3):965-993. PubMed ID: 28009893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-efficiency and high-resolution patterned quantum dot light emitting diodes by electrohydrodynamic printing.
    Wang H; Zhang Y; Liu Y; Chen Z; Li Y; Li X; Xu X
    Nanoscale Adv; 2023 Feb; 5(4):1183-1189. PubMed ID: 36798500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Resolution, Transparent, and Flexible Printing of Polydimethylsiloxane via Electrohydrodynamic Jet Printing for Conductive Electronic Device Applications.
    Hassan RU; Khalil SM; Khan SA; Ali S; Moon J; Cho DH; Byun D
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Writing of Microfluidic Footpaths by Pyro-EHD Printing.
    Coppola S; Nasti G; Todino M; Olivieri F; Vespini V; Ferraro P
    ACS Appl Mater Interfaces; 2017 May; 9(19):16488-16494. PubMed ID: 28446020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drop-on-demand printing of carbon black ink by electrohydrodynamic jet printing.
    Back SY; Song CH; Yu S; Lee HJ; Kim BS; Yang NY; Jeong SH; Ahn H
    J Nanosci Nanotechnol; 2012 Jan; 12(1):446-50. PubMed ID: 22524000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrohydrodynamic Printing of Microscale PEDOT:PSS-PEO Features with Tunable Conductive/Thermal Properties.
    Chang J; He J; Lei Q; Li D
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19116-19122. PubMed ID: 29745637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Scale Direct-Writing of Aligned Nanofibers for Flexible Electronics.
    Ye D; Ding Y; Duan Y; Su J; Yin Z; Huang YA
    Small; 2018 May; 14(21):e1703521. PubMed ID: 29473336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subtractive Patterning of Nanoscale Thin Films Using Acid-Based Electrohydrodynamic-Jet Printing.
    Cho TH; Farjam N; Barton K; Dasgupta NP
    Small Methods; 2024 May; 8(5):e2301407. PubMed ID: 38161264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes.
    Kim BH; Onses MS; Lim JB; Nam S; Oh N; Kim H; Yu KJ; Lee JW; Kim JH; Kang SK; Lee CH; Lee J; Shin JH; Kim NH; Leal C; Shim M; Rogers JA
    Nano Lett; 2015 Feb; 15(2):969-73. PubMed ID: 25584701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Strategy toward Realizing Narrow Line with High Electrical Conductivity by Electrohydrodynamic Printing.
    Liang H; Yao R; Zhang G; Zhang X; Liang Z; Yang Y; Ning H; Zhong J; Qiu T; Peng J
    Membranes (Basel); 2022 Jan; 12(2):. PubMed ID: 35207062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterning of High-Viscosity Silver Paste by an Electrohydrodynamic-Jet Printer for Use in TFT Applications.
    Can TTT; Nguyen TC; Choi WS
    Sci Rep; 2019 Jun; 9(1):9180. PubMed ID: 31235720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospray mechanism for quantum dot thin-film formation using an electrohydrodynamic jet and light-emitting device application.
    Nguyen TC; Choi WS
    Sci Rep; 2020 Jul; 10(1):11075. PubMed ID: 32632127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designs and applications of electrohydrodynamic 3D printing.
    Gao D; Zhou JG
    Int J Bioprint; 2019; 5(1):172. PubMed ID: 32782979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrohydrodynamic Inkjet Printing of Three-Dimensional Perovskite Nanocrystal Arrays for Full-Color Micro-LED Displays.
    Chen Y; Yang X; Fan X; Kang A; Kong X; Chen G; Zhong C; Lu Y; Fan Y; Hou X; Wu T; Chen Z; Wang S; Lin Y
    ACS Appl Mater Interfaces; 2024 May; 16(19):24908-24919. PubMed ID: 38706177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physics of moderately stretched electrified jets in electrohydrodynamic jet printing.
    Singh AK; Choubey A; Srivastava RK; Bahga SS
    Phys Rev E; 2023 Apr; 107(4-2):045103. PubMed ID: 37198839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics.
    Chang S; Koo JH; Yoo J; Kim MS; Choi MK; Kim DH; Song YM
    Chem Rev; 2024 Feb; 124(3):768-859. PubMed ID: 38241488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale coaxial focused electrohydrodynamic jet printing.
    Wang D; Zhao X; Lin Y; Liang J; Ren T; Liu Z; Li J
    Nanoscale; 2018 May; 10(21):9867-9879. PubMed ID: 29664090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Printable Transparent Conductive Films for Flexible Electronics.
    Li D; Lai WY; Zhang YZ; Huang W
    Adv Mater; 2018 Mar; 30(10):. PubMed ID: 29319214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.