These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 36083022)
1. The phers R package: using phenotype risk scores based on electronic health records to study Mendelian disease and rare genetic variants. Aref L; Bastarache L; Hughey JJ Bioinformatics; 2022 Oct; 38(21):4972-4974. PubMed ID: 36083022 [TBL] [Abstract][Full Text] [Related]
2. Improving the phenotype risk score as a scalable approach to identifying patients with Mendelian disease. Bastarache L; Hughey JJ; Goldstein JA; Bastraache JA; Das S; Zaki NC; Zeng C; Tang LA; Roden DM; Denny JC J Am Med Inform Assoc; 2019 Dec; 26(12):1437-1447. PubMed ID: 31609419 [TBL] [Abstract][Full Text] [Related]
3. Phenotype risk scores (PheRS) for pancreatic cancer using time-stamped electronic health record data: Discovery and validation in two large biobanks. Salvatore M; Beesley LJ; Fritsche LG; Hanauer D; Shi X; Mondul AM; Pearce CL; Mukherjee B J Biomed Inform; 2021 Jan; 113():103652. PubMed ID: 33279681 [TBL] [Abstract][Full Text] [Related]
4. Using Phecodes for Research with the Electronic Health Record: From PheWAS to PheRS. Bastarache L Annu Rev Biomed Data Sci; 2021 Jul; 4():1-19. PubMed ID: 34465180 [TBL] [Abstract][Full Text] [Related]
6. Phenotype Risk Score but Not Genetic Risk Score Aids in Identifying Individuals With Systemic Lupus Erythematosus in the Electronic Health Record. Barnado A; Wheless L; Camai A; Green S; Han B; Katta A; Denny JC; Sawalha AH Arthritis Rheumatol; 2023 Sep; 75(9):1532-1541. PubMed ID: 37096581 [TBL] [Abstract][Full Text] [Related]
7. Evaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health record. Wei WQ; Bastarache LA; Carroll RJ; Marlo JE; Osterman TJ; Gamazon ER; Cox NJ; Roden DM; Denny JC PLoS One; 2017; 12(7):e0175508. PubMed ID: 28686612 [TBL] [Abstract][Full Text] [Related]
8. qgg: an R package for large-scale quantitative genetic analyses. Rohde PD; Fourie Sørensen I; Sørensen P Bioinformatics; 2020 Apr; 36(8):2614-2615. PubMed ID: 31883004 [TBL] [Abstract][Full Text] [Related]
9. Phenotypic convergence: a novel phenomenon in the diagnostic process of Mendelian genetic disorders. Tinker RJ; Peterson J; Bastarache L medRxiv; 2023 Jan; ():. PubMed ID: 36711865 [TBL] [Abstract][Full Text] [Related]
10. The Role of Electronic Health Records in Advancing Genomic Medicine. Linder JE; Bastarache L; Hughey JJ; Peterson JF Annu Rev Genomics Hum Genet; 2021 Aug; 22():219-238. PubMed ID: 34038146 [TBL] [Abstract][Full Text] [Related]
11. Electronic health record phenotypes associated with genetically regulated expression of CFTR and application to cystic fibrosis. Zhong X; Yin Z; Jia G; Zhou D; Wei Q; Faucon A; Evans P; Gamazon ER; Li B; Tao R; Rzhetsky A; Bastarache L; Cox NJ Genet Med; 2020 Jul; 22(7):1191-1200. PubMed ID: 32296164 [TBL] [Abstract][Full Text] [Related]
12. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Yavorska OO; Burgess S Int J Epidemiol; 2017 Dec; 46(6):1734-1739. PubMed ID: 28398548 [TBL] [Abstract][Full Text] [Related]
13. Ravages: An R package for the simulation and analysis of rare variants in multicategory phenotypes. Bocher O; Marenne G; Génin E; Perdry H Genet Epidemiol; 2023 Sep; 47(6):450-460. PubMed ID: 37158367 [TBL] [Abstract][Full Text] [Related]
14. Phenotypic presentation of Mendelian disease across the diagnostic trajectory in electronic health records. Tinker RJ; Peterson J; Bastarache L Genet Med; 2023 Oct; 25(10):100921. PubMed ID: 37337966 [TBL] [Abstract][Full Text] [Related]
15. Zhao Z; Zucknick M; Aittokallio T Bioinform Adv; 2022; 2(1):vbac073. PubMed ID: 36699400 [TBL] [Abstract][Full Text] [Related]
16. comoRbidity: an R package for the systematic analysis of disease comorbidities. Gutiérrez-Sacristán A; Bravo À; Giannoula A; Mayer MA; Sanz F; Furlong LI Bioinformatics; 2018 Sep; 34(18):3228-3230. PubMed ID: 29897411 [TBL] [Abstract][Full Text] [Related]
17. pyPheWAS: A Phenome-Disease Association Tool for Electronic Medical Record Analysis. Kerley CI; Chaganti S; Nguyen TQ; Bermudez C; Cutting LE; Beason-Held LL; Lasko T; Landman BA Neuroinformatics; 2022 Apr; 20(2):483-505. PubMed ID: 34981404 [TBL] [Abstract][Full Text] [Related]
18. Linking rare and common disease vocabularies by mapping between the human phenotype ontology and phecodes. McArthur E; Bastarache L; Capra JA JAMIA Open; 2023 Apr; 6(1):ooad007. PubMed ID: 36875690 [TBL] [Abstract][Full Text] [Related]
19. Detection of rare disease variants in extended pedigrees using RVS. Sherman T; Fu J; Scharpf RB; Bureau A; Ruczinski I Bioinformatics; 2019 Jul; 35(14):2509-2511. PubMed ID: 30500888 [TBL] [Abstract][Full Text] [Related]
20. Deep Phenotyping on Electronic Health Records Facilitates Genetic Diagnosis by Clinical Exomes. Son JH; Xie G; Yuan C; Ena L; Li Z; Goldstein A; Huang L; Wang L; Shen F; Liu H; Mehl K; Groopman EE; Marasa M; Kiryluk K; Gharavi AG; Chung WK; Hripcsak G; Friedman C; Weng C; Wang K Am J Hum Genet; 2018 Jul; 103(1):58-73. PubMed ID: 29961570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]