These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 36083195)
1. Chemical Strategies for Dendritic Magneto-plasmonic Nanostructures Applied to Surface-Enhanced Raman Spectroscopy. Fernandes T; Nogueira HIS; Amorim CO; Amaral JS; Daniel-da-Silva AL; Trindade T Chemistry; 2022 Nov; 28(61):e202202382. PubMed ID: 36083195 [TBL] [Abstract][Full Text] [Related]
2. Dendrimer-based magneto-plasmonic nanosorbents for water quality monitoring using surface-enhanced Raman spectroscopy. Fernandes T; Martins NCT; Daniel-da-Silva AL; Trindade T Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 283():121730. PubMed ID: 35988470 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of polyhedral gold nanostars as surface-enhanced Raman spectroscopy substrates for measurement of thiram in peach juice. Sun L; Yu Z; Lin M Analyst; 2019 Aug; 144(16):4820-4825. PubMed ID: 31282496 [TBL] [Abstract][Full Text] [Related]
4. Chemical Strategies for Dendritic Magneto-plasmonic Nanostructures Applied to Surface-Enhanced Raman Spectroscopy. Fernandes T; Nogueira HIS; Amorim CO; Amaral JS; Daniel-da-Silva AL; Trindade T Chemistry; 2022 Nov; 28(61):e202203093. PubMed ID: 36253142 [TBL] [Abstract][Full Text] [Related]
5. Surface-enhanced Raman scattering detection of thiram and ciprofloxacin using chitosan-silver coated paper substrates. Martins NCT; Fateixa S; Nogueira HIS; Trindade T Analyst; 2023 Dec; 149(1):244-253. PubMed ID: 38032357 [TBL] [Abstract][Full Text] [Related]
6. Facile fabrication of flexible AuNPs@CDA SERS substrate for enrichment and detection of thiram pesticide in water. Yu H; Guo D; Zhang H; Jia X; Han L; Xiao W Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121930. PubMed ID: 36191437 [TBL] [Abstract][Full Text] [Related]
7. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring. Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972 [TBL] [Abstract][Full Text] [Related]
8. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring. Zhang L; Jiang C; Zhang Z Nanoscale; 2013 May; 5(9):3773-9. PubMed ID: 23535912 [TBL] [Abstract][Full Text] [Related]
10. Green Textile Materials for Surface Enhanced Raman Spectroscopy Identification of Pesticides Using a Raman Handheld Spectrometer for In-Field Detection. Hermsen A; Schoettl J; Hertel F; Cerullo M; Schlueter A; Lehmann CW; Mayer C; Jaeger M Appl Spectrosc; 2022 Oct; 76(10):1222-1233. PubMed ID: 35412371 [TBL] [Abstract][Full Text] [Related]
11. SERS detection of thiram using polyacrylamide hydrogel-enclosed gold nanoparticle aggregates. Wang K; Yue Z; Fang X; Lin H; Wang L; Cao L; Sui J; Ju L Sci Total Environ; 2023 Jan; 856(Pt 2):159108. PubMed ID: 36191707 [TBL] [Abstract][Full Text] [Related]
12. "On-site" analysis of pesticide residues in complex sample matrix by plasmonic SERS nanostructure hybridized hydrogel. Qi G; Wang Y; Liu T; Sun D Anal Chim Acta; 2023 Nov; 1282():341903. PubMed ID: 37923404 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic understanding of nanoparticle interactions to achieve highly-ordered arrays through self-assembly for sensitive surface-enhanced Raman scattering detection of trace thiram. Lin G; Zhou X; Lijie L Food Chem; 2024 Oct; 455():139852. PubMed ID: 38823142 [TBL] [Abstract][Full Text] [Related]
14. Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch. Masterson AN; Hati S; Ren G; Liyanage T; Manicke NE; Goodpaster JV; Sardar R Anal Chem; 2021 Feb; 93(4):2578-2588. PubMed ID: 33432809 [TBL] [Abstract][Full Text] [Related]
15. Self-assembly of Au nanocrystals into large-area 3-D ordered flexible superlattice nanostructures arrays for ultrasensitive trace multi-hazard detection. Liu W; Li Q; Wu J; Wang W; Jiang R; Zhou C; Wang S; Zhang X; Sun T; Xu Z; Wang D J Hazard Mater; 2023 Feb; 443(Pt A):130124. PubMed ID: 36308928 [TBL] [Abstract][Full Text] [Related]
16. Detection of thiram on fruit surfaces and in juices with minimum sample pretreatment via a bendable and reusable substrate for surface-enhanced Raman scattering. Wu J; Huang Y; Miao J; Lai K J Sci Food Agric; 2022 Nov; 102(14):6211-6219. PubMed ID: 35478166 [TBL] [Abstract][Full Text] [Related]