These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 36083195)
41. Integrated magneto-plasmonic nanostructures-based immunoassay for galectin-3 detection. Fateixa S; Martins ALF; Colaço B; António M; Daniel-da-Silva AL Anal Methods; 2024 Aug; 16(30):5212-5222. PubMed ID: 39007190 [TBL] [Abstract][Full Text] [Related]
42. Plasmonic Dual-Gap Nanodumbbells for Label-Free On-Particle Raman DNA Assays. Kim JM; Kim J; Choi K; Nam JM Adv Mater; 2023 Apr; 35(15):e2208250. PubMed ID: 36680474 [TBL] [Abstract][Full Text] [Related]
43. Etched-spiky Au@Ag plasmonic-superstructure monolayer films for triple amplification of surface-enhanced Raman scattering signals. Liu H; Zeng J; Song L; Zhang L; Chen Z; Li J; Xiao Z; Su F; Huang Y Nanoscale Horiz; 2022 May; 7(5):554-561. PubMed ID: 35347336 [TBL] [Abstract][Full Text] [Related]
44. Fiber-optic plasmonic probe with nanogap-rich Au nanoislands for on-site surface-enhanced Raman spectroscopy using repeated solid-state dewetting. Kwak J; Lee W; Kim JB; Bae SI; Jeong KH J Biomed Opt; 2019 Mar; 24(3):1-6. PubMed ID: 30873763 [TBL] [Abstract][Full Text] [Related]
45. Determination of thiram in fruit juices using a bacterial cellulose nanocrystal-based SERS substrate. Xiao L; Hua MZ; Lu X Int J Biol Macromol; 2024 Jan; 255():128207. PubMed ID: 37979753 [TBL] [Abstract][Full Text] [Related]
46. Gold nanoparticles with helical surface structure transformed from chiral molecules for SERS-active substrates preparation. Xing T; Qian Q; Ye H; Wang Z; Jin Y; Zhang N; Wang M; Zhou Y; Gao X; Wu L Biosens Bioelectron; 2022 Sep; 212():114430. PubMed ID: 35671694 [TBL] [Abstract][Full Text] [Related]
47. Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Wang K; Sun DW; Pu H; Wei Q Food Chem; 2020 Apr; 310():125923. PubMed ID: 31837530 [TBL] [Abstract][Full Text] [Related]
48. Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice. Xiong Z; Lin M; Lin H; Huang M Carbohydr Polym; 2018 Jun; 189():79-86. PubMed ID: 29580429 [TBL] [Abstract][Full Text] [Related]
49. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis. Sinha SS; Jones S; Pramanik A; Ray PC Acc Chem Res; 2016 Dec; 49(12):2725-2735. PubMed ID: 27993003 [TBL] [Abstract][Full Text] [Related]
50. In situ seed-growth synthesis of silver nanoplates on glass for the detection of food contaminants by surface enhanced Raman scattering. D'Agostino A; Giovannozzi AM; Mandrile L; Sacco A; Rossi AM; Taglietti A Talanta; 2020 Aug; 216():120936. PubMed ID: 32456888 [TBL] [Abstract][Full Text] [Related]
51. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants. Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365 [TBL] [Abstract][Full Text] [Related]
52. Determination of the Limit of Detection of Multiple Pesticides Utilizing Gold Nanoparticles and Surface-Enhanced Raman Spectroscopy. Dowgiallo AM; Guenther DA J Agric Food Chem; 2019 Nov; 67(46):12642-12651. PubMed ID: 31188587 [TBL] [Abstract][Full Text] [Related]
53. 4-Mercaptobenzoic Acid Labeled Gold-Silver-Alloy-Embedded Silica Nanoparticles as an Internal Standard Containing Nanostructures for Sensitive Quantitative Thiram Detection. Pham XH; Hahm E; Huynh KH; Son BS; Kim HM; Jeong DH; Jun BH Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31569479 [TBL] [Abstract][Full Text] [Related]
54. Feasibility of biomass-based flexible and transparent AuNPs-acetylcellulose membrane for multifarious surface-enhanced Raman spectroscopy detection. Yu H; Guo D; Chen X; Liang X; Yang Z; Han L; Xiao W Anal Chim Acta; 2024 Oct; 1327():343157. PubMed ID: 39266062 [TBL] [Abstract][Full Text] [Related]
55. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering. Lee H; Lee JH; Jin SM; Suh YD; Nam JM Nano Lett; 2013; 13(12):6113-21. PubMed ID: 24256433 [TBL] [Abstract][Full Text] [Related]
56. Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds. Hugall JT; Baumberg JJ Nano Lett; 2015 Apr; 15(4):2600-4. PubMed ID: 25734469 [TBL] [Abstract][Full Text] [Related]
57. Au-Ag OHCs-based SERS sensor coupled with deep learning CNN algorithm to quantify thiram and pymetrozine in tea. Li H; Luo X; Haruna SA; Zareef M; Chen Q; Ding Z; Yan Y Food Chem; 2023 Dec; 428():136798. PubMed ID: 37423106 [TBL] [Abstract][Full Text] [Related]
58. Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced Raman scattering sensor for specific detection of trace analytes. Zhang K; Ji J; Li Y; Liu B Anal Chem; 2014 Jul; 86(13):6660-5. PubMed ID: 24915488 [TBL] [Abstract][Full Text] [Related]
59. Magnetic iron oxide cores with attached gold nanostructures coated with a layer of silica: An easily, homogeneously deposited new nanomaterial for surface-enhanced Raman scattering measurements. Michałowska A; Krajczewski J; Kudelski A Spectrochim Acta A Mol Biomol Spectrosc; 2022 Sep; 277():121266. PubMed ID: 35452900 [TBL] [Abstract][Full Text] [Related]
60. Sensitive and handy detection of pesticide residue on fruit surface based on single microsphere surface-enhanced Raman spectroscopy technique. Feng Y; Wang X; Chang Y; Guo J; Wang C J Colloid Interface Sci; 2022 Dec; 628(Pt B):116-128. PubMed ID: 35987151 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]