These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 36083195)
61. Rapid determination of thiram and atrazine pesticide residues in fruit and aqueous system based on surface-enhanced Raman scattering. Ding Y; Hao B; Zhang N; Lv H; Zhao B; Tian Y Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121873. PubMed ID: 36126624 [TBL] [Abstract][Full Text] [Related]
62. Gold and silver nanoparticle monomers are non-SERS-active: a negative experimental study with silica-encapsulated Raman-reporter-coated metal colloids. Zhang Y; Walkenfort B; Yoon JH; Schlücker S; Xie W Phys Chem Chem Phys; 2015 Sep; 17(33):21120-6. PubMed ID: 25491599 [TBL] [Abstract][Full Text] [Related]
63. Direct Thermal Growth of Gold Nanopearls on 3D Interweaved Hydrophobic Fibers as Ultrasensitive Portable SERS Substrates for Clinical Applications. Lin HY; Chen WR; Lu LC; Chen HL; Chen YH; Pan M; Chen CC; Chen C; Yen TH; Wan D Small; 2023 Jul; 19(28):e2207404. PubMed ID: 36974592 [TBL] [Abstract][Full Text] [Related]
64. Core-shell Au@ZIF-67-based pollutant monitoring of thiram and carbendazim pesticides. Tran HN; Nguyen NB; Ly NH; Joo SW; Vasseghian Y Environ Pollut; 2023 Jan; 317():120775. PubMed ID: 36455771 [TBL] [Abstract][Full Text] [Related]
65. Gold nanostars as a colloidal substrate for in-solution SERS measurements using a handheld Raman spectrometer. Mahmoud AYF; Rusin CJ; McDermott MT Analyst; 2020 Feb; 145(4):1396-1407. PubMed ID: 32016204 [TBL] [Abstract][Full Text] [Related]
66. Direct Detection of Toxic Contaminants in Minimally Processed Food Products Using Dendritic Surface-Enhanced Raman Scattering Substrates. Dies H; Siampani M; Escobedo C; Docoslis A Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30126248 [TBL] [Abstract][Full Text] [Related]
67. Surface-enhanced Raman spectroscopy of organic molecules adsorbed on metallic nanoparticles. Heleg-Shabtai V; Zifman A; Kendler S Adv Exp Med Biol; 2012; 733():53-61. PubMed ID: 22101712 [TBL] [Abstract][Full Text] [Related]
68. A novel paper rag as 'D-SERS' substrate for detection of pesticide residues at various peels. Zhu Y; Li M; Yu D; Yang L Talanta; 2014 Oct; 128():117-24. PubMed ID: 25059138 [TBL] [Abstract][Full Text] [Related]
69. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering. Yang Y; Tanemura M; Huang Z; Jiang D; Li ZY; Huang YP; Kawamura G; Yamaguchi K; Nogami M Nanotechnology; 2010 Aug; 21(32):325701. PubMed ID: 20639588 [TBL] [Abstract][Full Text] [Related]
70. Simultaneous In Situ Extraction and Fabrication of Surface-Enhanced Raman Scattering Substrate for Reliable Detection of Thiram Residue. Chen M; Luo W; Liu Q; Hao N; Zhu Y; Liu M; Wang L; Yang H; Chen X Anal Chem; 2018 Nov; 90(22):13647-13654. PubMed ID: 30379069 [TBL] [Abstract][Full Text] [Related]
71. Flexible and transparent Surface Enhanced Raman Scattering (SERS)-Active Ag NPs/PDMS composites for in-situ detection of food contaminants. Alyami A; Quinn AJ; Iacopino D Talanta; 2019 Aug; 201():58-64. PubMed ID: 31122461 [TBL] [Abstract][Full Text] [Related]
72. Surface-Enhanced Raman Spectroscopy Substrates for Food Safety and Quality Analysis. Nilghaz A; Mahdi Mousavi S; Amiri A; Tian J; Cao R; Wang X J Agric Food Chem; 2022 May; 70(18):5463-5476. PubMed ID: 35471937 [TBL] [Abstract][Full Text] [Related]
73. The Effect of Nanoparticle Composition on the Surface-Enhanced Raman Scattering Performance of Plasmonic DNA Origami Nanoantennas. Kanehira Y; Tapio K; Wegner G; Kogikoski S; Rüstig S; Prietzel C; Busch K; Bald I ACS Nano; 2023 Nov; 17(21):21227-21239. PubMed ID: 37847540 [TBL] [Abstract][Full Text] [Related]
75. Facile synthesis of metal-phenolic-coated gold nanocuboids for surface-enhanced Raman scattering. Zhou M; Zhao C; Li Y; Guo Y; Liu H; Zhang Y; Liu Z Appl Opt; 2020 Jul; 59(20):6124-6130. PubMed ID: 32672759 [TBL] [Abstract][Full Text] [Related]
77. Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures. Lee CH; Hankus ME; Tian L; Pellegrino PM; Singamaneni S Anal Chem; 2011 Dec; 83(23):8953-8. PubMed ID: 22017379 [TBL] [Abstract][Full Text] [Related]
78. Mesoporous silica-coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy. Yang J; Shen D; Zhou L; Li W; Fan J; El-Toni AM; Zhang WX; Zhang F; Zhao D Adv Healthc Mater; 2014 Oct; 3(10):1620-8. PubMed ID: 24665061 [TBL] [Abstract][Full Text] [Related]
79. Silent region barcode particle arrays for ultrasensitive multiplexed SERS detection. Liu X; Li M; Yu X; Shen L; Li W Biosens Bioelectron; 2023 Jan; 219():114804. PubMed ID: 36272345 [TBL] [Abstract][Full Text] [Related]
80. Label-free and liquid state SERS detection of multi-scaled bioanalytes via light-induced pinpoint colloidal assembly. Han S; Park J; Moon S; Eom S; Jin CM; Kim S; Ryu YS; Choi Y; Lee JB; Choi I Biosens Bioelectron; 2024 Nov; 264():116663. PubMed ID: 39167886 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]