These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36083452)

  • 1. Ancestral State Reconstruction Using BayesTraits.
    Meade A; Pagel M
    Methods Mol Biol; 2022; 2569():255-266. PubMed ID: 36083452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partially incorrect fossil data augment analyses of discrete trait evolution in living species.
    Puttick MN
    Biol Lett; 2016 Aug; 12(8):. PubMed ID: 27484647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating fossils with molecular phylogenies improves inference of trait evolution.
    Slater GJ; Harmon LJ; Alfaro ME
    Evolution; 2012 Dec; 66(12):3931-44. PubMed ID: 23206147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian estimation of ancestral character states on phylogenies.
    Pagel M; Meade A; Barker D
    Syst Biol; 2004 Oct; 53(5):673-84. PubMed ID: 15545248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record.
    Finarelli JA; Flynn JJ
    Syst Biol; 2006 Apr; 55(2):301-13. PubMed ID: 16611601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robustness of ancestral sequence reconstruction to phylogenetic uncertainty.
    Hanson-Smith V; Kolaczkowski B; Thornton JW
    Mol Biol Evol; 2010 Sep; 27(9):1988-99. PubMed ID: 20368266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping uncertainty and phylogenetic uncertainty in ancestral character state reconstruction: an example in the moss genus Brachytheciastrum.
    Vanderpoorten A; Goffinet B
    Syst Biol; 2006 Dec; 55(6):957-71. PubMed ID: 17345677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bayesian extension of phylogenetic generalized least squares: Incorporating uncertainty in the comparative study of trait relationships and evolutionary rates.
    Fuentes-G JA; Polly PD; Martins EP
    Evolution; 2020 Feb; 74(2):311-325. PubMed ID: 31849034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Illustrating phylogenetic placement of fossils using RoguePlots: An example from ichneumonid parasitoid wasps (Hymenoptera, Ichneumonidae) and an extensive morphological matrix.
    Klopfstein S; Spasojevic T
    PLoS One; 2019; 14(4):e0212942. PubMed ID: 30939174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling Pulsed Evolution and Time-Independent Variation Improves the Confidence Level of Ancestral and Hidden State Predictions.
    Gao Y; Wu M
    Syst Biol; 2022 Aug; 71(5):1225-1232. PubMed ID: 35212761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating fossils, phylogenies, and niche models into biogeography to reveal ancient evolutionary history: the case of Hypericum (hypericaceae).
    Meseguer AS; Lobo JM; Ree R; Beerling DJ; Sanmartín I
    Syst Biol; 2015 Mar; 64(2):215-32. PubMed ID: 25398444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian models for comparative analysis integrating phylogenetic uncertainty.
    de Villemereuil P; Wells JA; Edwards RD; Blomberg SP
    BMC Evol Biol; 2012 Jun; 12():102. PubMed ID: 22741602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial DNA as a tool for reconstructing past life-history traits in mammals.
    Figuet E; Romiguier J; Dutheil JY; Galtier N
    J Evol Biol; 2014 May; 27(5):899-910. PubMed ID: 24720883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing the origins and the biogeography of species' genomes in the highly reticulate allopolyploid-rich model grass genus Brachypodium using minimum evolution, coalescence and maximum likelihood approaches.
    Díaz-Pérez A; López-Álvarez D; Sancho R; Catalán P
    Mol Phylogenet Evol; 2018 Oct; 127():256-271. PubMed ID: 29879468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrative phylogenetic approach for inferring relationships of fossil gobioids (Teleostei: Gobiiformes).
    Gierl C; Dohrmann M; Keith P; Humphreys W; Esmaeili HR; Vukić J; Šanda R; Reichenbacher B
    PLoS One; 2022; 17(7):e0271121. PubMed ID: 35802740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phylogenetic Kalman filter for ancestral trait reconstruction using molecular data.
    Lartillot N
    Bioinformatics; 2014 Feb; 30(4):488-96. PubMed ID: 24318999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The probability distribution of the ancestral population size conditioned on the reconstructed phylogenetic tree with occurrence data.
    Manceau M; Gupta A; Vaughan T; Stadler T
    J Theor Biol; 2021 Jan; 509():110400. PubMed ID: 32739241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dasycerine rove beetles: Cretaceous diversification, phylogeny and historical biogeography (Coleoptera: Staphylinidae: Dasycerinae).
    Yin ZW; Lü L; Yamamoto S; Thayer MK; Newton AF; Cai CY
    Cladistics; 2021 Apr; 37(2):185-210. PubMed ID: 34478187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian placement of fossils on phylogenies using quantitative morphometric data.
    Parins-Fukuchi C
    Evolution; 2018 Sep; 72(9):1801-1814. PubMed ID: 29998561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and Homo floresiensis.
    Montgomery SH; Capellini I; Barton RA; Mundy NI
    BMC Biol; 2010 Jan; 8():9. PubMed ID: 20105283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.