These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36083808)

  • 1. Systematic Improvement of the Performance of Machine Learning Scoring Functions by Incorporating Features of Protein-Bound Water Molecules.
    Qu X; Dong L; Zhang J; Si Y; Wang B
    J Chem Inf Model; 2022 Sep; 62(18):4369-4379. PubMed ID: 36083808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MetaScore: A Novel Machine-Learning-Based Approach to Improve Traditional Scoring Functions for Scoring Protein-Protein Docking Conformations.
    Jung Y; Geng C; Bonvin AMJJ; Xue LC; Honavar VG
    Biomolecules; 2023 Jan; 13(1):. PubMed ID: 36671507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning from Docked Ligands: Ligand-Based Features Rescue Structure-Based Scoring Functions When Trained on Docked Poses.
    Boyles F; Deane CM; Morris GM
    J Chem Inf Model; 2022 Nov; 62(22):5329-5341. PubMed ID: 34469150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving structure-based virtual screening performance via learning from scoring function components.
    Xiong GL; Ye WL; Shen C; Lu AP; Hou TJ; Cao DS
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32496540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can machine learning consistently improve the scoring power of classical scoring functions? Insights into the role of machine learning in scoring functions.
    Shen C; Hu Y; Wang Z; Zhang X; Zhong H; Wang G; Yao X; Xu L; Cao D; Hou T
    Brief Bioinform; 2021 Jan; 22(1):497-514. PubMed ID: 31982914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extended connectivity interaction features: improving binding affinity prediction through chemical description.
    Sánchez-Cruz N; Medina-Franco JL; Mestres J; Barril X
    Bioinformatics; 2021 Jun; 37(10):1376-1382. PubMed ID: 33226061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 6(Suppl 6):S3. PubMed ID: 25916860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating Explicit Water Molecules and Ligand Conformation Stability in Machine-Learning Scoring Functions.
    Lu J; Hou X; Wang C; Zhang Y
    J Chem Inf Model; 2019 Nov; 59(11):4540-4549. PubMed ID: 31638801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the Favorable Hydration Sites in a Protein Binding Pocket and Its Application to Scoring Function Formulation.
    Li Y; Gao Y; Holloway MK; Wang R
    J Chem Inf Model; 2020 Sep; 60(9):4359-4375. PubMed ID: 32401510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Impact of Protein Structure and Sequence Similarity on the Accuracy of Machine-Learning Scoring Functions for Binding Affinity Prediction.
    Li H; Peng J; Leung Y; Leung KS; Wong MH; Lu G; Ballester PJ
    Biomolecules; 2018 Mar; 8(1):. PubMed ID: 29538331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classical scoring functions for docking are unable to exploit large volumes of structural and interaction data.
    Li H; Peng J; Sidorov P; Leung Y; Leung KS; Wong MH; Lu G; Ballester PJ
    Bioinformatics; 2019 Oct; 35(20):3989-3995. PubMed ID: 30873528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water Network-Augmented Two-State Model for Protein-Ligand Binding Affinity Prediction.
    Qu X; Dong L; Luo D; Si Y; Wang B
    J Chem Inf Model; 2024 Apr; 64(7):2263-2274. PubMed ID: 37433009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning on ligand-residue interaction profiles to significantly improve binding affinity prediction.
    Ji B; He X; Zhai J; Zhang Y; Man VH; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33758923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1301-13. PubMed ID: 22411892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of cross-docked poses on performance of machine learning classifier for protein-ligand binding pose prediction.
    Shen C; Hu X; Gao J; Zhang X; Zhong H; Wang Z; Xu L; Kang Y; Cao D; Hou T
    J Cheminform; 2021 Oct; 13(1):81. PubMed ID: 34656169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iterative Knowledge-Based Scoring Function for Protein-Ligand Interactions by Considering Binding Affinity Information.
    Zhao X; Li H; Zhang K; Huang SY
    J Phys Chem B; 2023 Oct; 127(42):9021-9034. PubMed ID: 37822259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delta Machine Learning to Improve Scoring-Ranking-Screening Performances of Protein-Ligand Scoring Functions.
    Yang C; Zhang Y
    J Chem Inf Model; 2022 Jun; 62(11):2696-2712. PubMed ID: 35579568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.