BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36083917)

  • 1. Transformer-Based T2-weighted MRI Synthesis from T1-weighted Images.
    Pan K; Cheng P; Huang Z; Lin L; Tang X
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():5062-5065. PubMed ID: 36083917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimodal MRI synthesis using unified generative adversarial networks.
    Dai X; Lei Y; Fu Y; Curran WJ; Liu T; Mao H; Yang X
    Med Phys; 2020 Dec; 47(12):6343-6354. PubMed ID: 33053202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GAN for synthesizing CT from T2-weighted MRI data towards MR-guided radiation treatment.
    Ranjan A; Lalwani D; Misra R
    MAGMA; 2022 Jun; 35(3):449-457. PubMed ID: 34741702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CT-Based Pelvic T
    Kalantar R; Messiou C; Winfield JM; Renn A; Latifoltojar A; Downey K; Sohaib A; Lalondrelle S; Koh DM; Blackledge MD
    Front Oncol; 2021; 11():665807. PubMed ID: 34395244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesizing high-resolution magnetic resonance imaging using parallel cycle-consistent generative adversarial networks for fast magnetic resonance imaging.
    Xie H; Lei Y; Wang T; Roper J; Dhabaan AH; Bradley JD; Liu T; Mao H; Yang X
    Med Phys; 2022 Jan; 49(1):357-369. PubMed ID: 34821395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Common feature learning for brain tumor MRI synthesis by context-aware generative adversarial network.
    Huang P; Li D; Jiao Z; Wei D; Cao B; Mo Z; Wang Q; Zhang H; Shen D
    Med Image Anal; 2022 Jul; 79():102472. PubMed ID: 35567847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generative adversarial networks with adaptive normalization for synthesizing T2-weighted magnetic resonance images from diffusion-weighted images.
    Mao Y; Chen C; Wang Z; Cheng D; You P; Huang X; Zhang B; Zhao F
    Front Neurosci; 2022; 16():1058487. PubMed ID: 36452330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D multi-modality Transformer-GAN for high-quality PET reconstruction.
    Wang Y; Luo Y; Zu C; Zhan B; Jiao Z; Wu X; Zhou J; Shen D; Zhou L
    Med Image Anal; 2024 Jan; 91():102983. PubMed ID: 37926035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FDG-PET to T1 Weighted MRI Translation with 3D Elicit Generative Adversarial Network (E-GAN).
    Bazangani F; Richard FJP; Ghattas B; Guedj E;
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T1-weighted and T2-weighted MRI image synthesis with convolutional generative adversarial networks.
    Kawahara D; Nagata Y
    Rep Pract Oncol Radiother; 2021; 26(1):35-42. PubMed ID: 33948300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial adaptive and transformer fusion network (STFNet) for low-count PET blind denoising with MRI.
    Zhang L; Xiao Z; Zhou C; Yuan J; He Q; Yang Y; Liu X; Liang D; Zheng H; Fan W; Zhang X; Hu Z
    Med Phys; 2022 Jan; 49(1):343-356. PubMed ID: 34796526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MRI image synthesis for fluid-attenuated inversion recovery and diffusion-weighted images with deep learning.
    Kawahara D; Yoshimura H; Matsuura T; Saito A; Nagata Y
    Phys Eng Sci Med; 2023 Mar; 46(1):313-323. PubMed ID: 36715853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-sequence MR image-based synthetic CT generation using a generative adversarial network for head and neck MRI-only radiotherapy.
    Qi M; Li Y; Wu A; Jia Q; Li B; Sun W; Dai Z; Lu X; Zhou L; Deng X; Song T
    Med Phys; 2020 Apr; 47(4):1880-1894. PubMed ID: 32027027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lumbar Spine Computed Tomography to Magnetic Resonance Imaging Synthesis Using Generative Adversarial Network: Visual Turing Test.
    Hong KT; Cho Y; Kang CH; Ahn KS; Lee H; Kim J; Hong SJ; Kim BH; Shim E
    Diagnostics (Basel); 2022 Feb; 12(2):. PubMed ID: 35204619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Style transfer in conditional GANs for cross-modality synthesis of brain magnetic resonance images.
    Qin Z; Liu Z; Zhu P; Ling W
    Comput Biol Med; 2022 Sep; 148():105928. PubMed ID: 35952543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual high-resolution MR angiography from non-angiographic multi-contrast MRIs: synthetic vascular model populations for in-silico trials.
    Xia Y; Ravikumar N; Lassila T; Frangi AF
    Med Image Anal; 2023 Jul; 87():102814. PubMed ID: 37196537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swin transformer-based GAN for multi-modal medical image translation.
    Yan S; Wang C; Chen W; Lyu J
    Front Oncol; 2022; 12():942511. PubMed ID: 36003791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction of multicontrast MR images through deep learning.
    Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH
    Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fat-saturated image generation from multi-contrast MRIs using generative adversarial networks with Bloch equation-based autoencoder regularization.
    Kim S; Jang H; Hong S; Hong YS; Bae WC; Kim S; Hwang D
    Med Image Anal; 2021 Oct; 73():102198. PubMed ID: 34403931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TCGAN: a transformer-enhanced GAN for PET synthetic CT.
    Li J; Qu Z; Yang Y; Zhang F; Li M; Hu S
    Biomed Opt Express; 2022 Nov; 13(11):6003-6018. PubMed ID: 36733758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.