These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36083945)
21. A new classification system for autism based on machine learning of artificial intelligence. Shahamiri SR; Thabtah F; Abdelhamid N Technol Health Care; 2022; 30(3):605-622. PubMed ID: 34657857 [TBL] [Abstract][Full Text] [Related]
22. Identification of newborns at risk for autism using electronic medical records and machine learning. Rahman R; Kodesh A; Levine SZ; Sandin S; Reichenberg A; Schlessinger A Eur Psychiatry; 2020 Feb; 63(1):e22. PubMed ID: 32100657 [TBL] [Abstract][Full Text] [Related]
23. Reproducible neuroimaging features for diagnosis of autism spectrum disorder with machine learning. Mellema CJ; Nguyen KP; Treacher A; Montillo A Sci Rep; 2022 Feb; 12(1):3057. PubMed ID: 35197468 [TBL] [Abstract][Full Text] [Related]
24. Classification of autism spectrum disorder using electroencephalography in Chinese children: a cross-sectional retrospective study. Ke SY; Wu H; Sun H; Zhou A; Liu J; Zheng X; Liu K; Westover MB; Xu H; Kong XJ Front Neurosci; 2024; 18():1330556. PubMed ID: 38332856 [TBL] [Abstract][Full Text] [Related]
25. Machine Learning-Based Blood RNA Signature for Diagnosis of Autism Spectrum Disorder. Voinsky I; Fridland OY; Aran A; Frye RE; Gurwitz D Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768401 [TBL] [Abstract][Full Text] [Related]
26. Enhancing autism spectrum disorder classification in children through the integration of traditional statistics and classical machine learning techniques in EEG analysis. Rogala J; Żygierewicz J; Malinowska U; Cygan H; Stawicka E; Kobus A; Vanrumste B Sci Rep; 2023 Dec; 13(1):21748. PubMed ID: 38066046 [TBL] [Abstract][Full Text] [Related]
27. Sparsifying machine learning models identify stable subsets of predictive features for behavioral detection of autism. Levy S; Duda M; Haber N; Wall DP Mol Autism; 2017; 8():65. PubMed ID: 29270283 [TBL] [Abstract][Full Text] [Related]
28. A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG. Tawhid MNA; Siuly S; Wang H; Whittaker F; Wang K; Zhang Y PLoS One; 2021; 16(6):e0253094. PubMed ID: 34170979 [TBL] [Abstract][Full Text] [Related]
29. Identifying neuroanatomical and behavioral features for autism spectrum disorder diagnosis in children using machine learning. Han Y; Rizzo DM; Hanley JP; Coderre EL; Prelock PA PLoS One; 2022; 17(7):e0269773. PubMed ID: 35797364 [TBL] [Abstract][Full Text] [Related]
30. The electroretinogram b-wave amplitude: a differential physiological measure for Attention Deficit Hyperactivity Disorder and Autism Spectrum Disorder. Lee IO; Skuse DH; Constable PA; Marmolejo-Ramos F; Olsen LR; Thompson DA J Neurodev Disord; 2022 May; 14(1):30. PubMed ID: 35524181 [TBL] [Abstract][Full Text] [Related]
31. Assessment of the Autism Spectrum Disorder Based on Machine Learning and Social Visual Attention: A Systematic Review. Minissi ME; Chicchi Giglioli IA; Mantovani F; Alcañiz Raya M J Autism Dev Disord; 2022 May; 52(5):2187-2202. PubMed ID: 34101081 [TBL] [Abstract][Full Text] [Related]
32. Automated identification of postural control for children with autism spectrum disorder using a machine learning approach. Li Y; Mache MA; Todd TA J Biomech; 2020 Dec; 113():110073. PubMed ID: 33142203 [TBL] [Abstract][Full Text] [Related]
33. Brain imaging-based machine learning in autism spectrum disorder: methods and applications. Xu M; Calhoun V; Jiang R; Yan W; Sui J J Neurosci Methods; 2021 Sep; 361():109271. PubMed ID: 34174282 [TBL] [Abstract][Full Text] [Related]
34. AIMAFE: Autism spectrum disorder identification with multi-atlas deep feature representation and ensemble learning. Wang Y; Wang J; Wu FX; Hayrat R; Liu J J Neurosci Methods; 2020 Sep; 343():108840. PubMed ID: 32653384 [TBL] [Abstract][Full Text] [Related]
35. Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment. Hicks SD; Ignacio C; Gentile K; Middleton FA BMC Pediatr; 2016 Apr; 16():52. PubMed ID: 27105825 [TBL] [Abstract][Full Text] [Related]
36. Identifying predictive features of autism spectrum disorders in a clinical sample of adolescents and adults using machine learning. Küpper C; Stroth S; Wolff N; Hauck F; Kliewer N; Schad-Hansjosten T; Kamp-Becker I; Poustka L; Roessner V; Schultebraucks K; Roepke S Sci Rep; 2020 Mar; 10(1):4805. PubMed ID: 32188882 [TBL] [Abstract][Full Text] [Related]
37. The study of the differences between low-functioning autistic children and typically developing children in the processing of the own-race and other-race faces by the machine learning approach. Kang J; Han X; Hu JF; Feng H; Li X J Clin Neurosci; 2020 Nov; 81():54-60. PubMed ID: 33222968 [TBL] [Abstract][Full Text] [Related]
38. Hybrid deep transfer learning-based early diagnosis of autism spectrum disorder using scalogram representation of electroencephalography signals. Abedinzadeh Torghabeh F; Modaresnia Y; Moattar MH Med Biol Eng Comput; 2024 Feb; 62(2):495-503. PubMed ID: 37938451 [TBL] [Abstract][Full Text] [Related]
39. A Review of Machine Learning Methods of Feature Selection and Classification for Autism Spectrum Disorder. Rahman MM; Usman OL; Muniyandi RC; Sahran S; Mohamed S; Razak RA Brain Sci; 2020 Dec; 10(12):. PubMed ID: 33297436 [TBL] [Abstract][Full Text] [Related]
40. A new computational intelligence approach to detect autistic features for autism screening. Thabtah F; Kamalov F; Rajab K Int J Med Inform; 2018 Sep; 117():112-124. PubMed ID: 30032959 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]