BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36083953)

  • 21. Changes in inertia and effect on turning effort across different wheelchair configurations.
    Caspall JJ; Seligsohn E; Dao PV; Sprigle S
    J Rehabil Res Dev; 2013; 50(10):1353-62. PubMed ID: 24699971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Directional instability of rear caster wheelchairs.
    Collins TJ; Kauzlarich JJ
    J Rehabil Res Dev; 1988; 25(3):1-18. PubMed ID: 3411523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Manual Wheelchair Configuration in Unilateral Upper- and Lower-Extremity Propulsion: A Randomized Crossover Study to Assess Effects of Rear Wheel Axle Position and Frame Type.
    Tefertiller C; Jones J; Sevigny M; Dahlin M
    Arch Phys Med Rehabil; 2023 Aug; 104(8):1188-1194. PubMed ID: 37024004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using the absorbed power method to evaluate effectiveness of vibration absorption of selected seat cushions during manual wheelchair propulsion.
    Wolf EJ; Cooper MS; DiGiovine CP; Boninger ML; Guo S
    Med Eng Phys; 2004 Nov; 26(9):799-806. PubMed ID: 15564117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A wheelchair with lever propulsion control for climbing up and down stairs.
    Sasaki K; Eguchi Y; Suzuki K
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3358-3361. PubMed ID: 28269023
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of rear suspension and speed on seat forces and head accelerations experienced by manual wheelchair riders with spinal cord injury.
    Requejo PS; Kerdanyan G; Minkel J; Adkins R; Waters R
    J Rehabil Res Dev; 2008; 45(7):985-96. PubMed ID: 19165688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wheelchair caster loading during frontal impact.
    Bertocci GE; van Roosmalen L
    Assist Technol; 2003; 15(2):105-12. PubMed ID: 15137727
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of operator and wheelchair factors on wheelchair propulsion effort.
    Lin JT; Sprigle S
    Disabil Rehabil Assist Technol; 2020 Apr; 15(3):328-335. PubMed ID: 30810404
    [No Abstract]   [Full Text] [Related]  

  • 29. Variability in bimanual wheelchair propulsion: consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill.
    Vegter RJ; Lamoth CJ; de Groot S; Veeger DH; van der Woude LH
    J Neuroeng Rehabil; 2013 Jan; 10():9. PubMed ID: 23360756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A five-wheel wheelchair with an active-caster drive system.
    Munakata Y; Tanaka A; Wada M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650438. PubMed ID: 24187256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rolling resistance of casters increases significantly after two years of simulated use.
    Wilson-Jene H; Mhatre A; Ott J; Krider B; Smith C; Terhorst L; Pearlman J
    J Rehabil Assist Technol Eng; 2021; 8():20556683211025149. PubMed ID: 34408905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of vertical reaction forces during propulsion of three different one-arm drive wheelchairs by hemiplegic users.
    Mandy A; Redhead L; McCudden C; Michaelis J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):242-7. PubMed ID: 23527873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A kinetic analysis of manual wheelchair propulsion during start-up on select indoor and outdoor surfaces.
    Koontz AM; Cooper RA; Boninger ML; Yang Y; Impink BG; van der Woude LH
    J Rehabil Res Dev; 2005; 42(4):447-58. PubMed ID: 16320141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Whole-body vibration during manual wheelchair propulsion with selected seat cushions and back supports.
    DiGiovine CP; Cooper RA; Fitzgerald SG; Boninger ML; Wolf EJ; Guo S
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):311-22. PubMed ID: 14518796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Curb descent testing of suspension manual wheelchairs.
    Kwarciak AM; Cooper RA; Fitzgerald SG
    J Rehabil Res Dev; 2008; 45(1):73-84. PubMed ID: 18566927
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of wheelchair wheels in terms of vibration and spasticity in people with spinal cord injury.
    Vorrink SN; Van der Woude LH; Messenberg A; Cripton PA; Hughes B; Sawatzky BJ
    J Rehabil Res Dev; 2008; 45(9):1269-79. PubMed ID: 19319752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of wheelchair drag resistance using a coasting deceleration technique.
    Hoffman MD; Millet GY; Hoch AZ; Candau RB
    Am J Phys Med Rehabil; 2003 Nov; 82(11):880-9; quiz 890-2. PubMed ID: 14566157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two approaches to manual wheelchair configuration and effects on function for individuals with acquired brain injury.
    Regier AD; Berryman A; Hays K; Smith C; Staniszewski K; Gerber D
    NeuroRehabilitation; 2014; 35(3):467-73. PubMed ID: 25227544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of seat height on manual wheelchair foot propulsion, a repeated-measures crossover study: part 2 - wheeling backward on a soft surface.
    Heinrichs ND; Kirby RL; Smith C; Russell KFJ; Theriault CJ; Doucette SP
    Disabil Rehabil Assist Technol; 2022 Apr; 17(3):325-330. PubMed ID: 32594783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of carbon fibre and aluminium materials in the construction of ultralight wheelchairs.
    Gebrosky B; Grindle G; Cooper R; Cooper R
    Disabil Rehabil Assist Technol; 2020 May; 15(4):432-441. PubMed ID: 30907192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.