These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 36084173)

  • 21. Designable Integration of Silicide Nanowire Springs as Ultra-Compact and Stretchable Electronic Interconnections.
    Yuan R; Qian W; Liu Z; Wang J; Xu J; Chen K; Yu L
    Small; 2022 Feb; 18(6):e2104690. PubMed ID: 34859580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical Properties of Silicon Nanowires Fabricated by Environment-Friendly Chemistry.
    Gonchar KA; Zubairova AA; Schleusener A; Osminkina LA; Sivakov V
    Nanoscale Res Lett; 2016 Dec; 11(1):357. PubMed ID: 27506530
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and Optical Properties of Silicon Nanowire Arrays Fabricated by Metal Assisted Chemical Etching With Ammonium Fluoride.
    Gonchar KA; Kitaeva VY; Zharik GA; Eliseev AA; Osminkina LA
    Front Chem; 2018; 6():653. PubMed ID: 30662894
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties.
    Park WI; Zheng G; Jiang X; Tian B; Lieber CM
    Nano Lett; 2008 Sep; 8(9):3004-9. PubMed ID: 18710294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-assembling silicon nanowires for device applications using the nanochannel-guided "grow-in-place" approach.
    Shan Y; Fonash SJ
    ACS Nano; 2008 Mar; 2(3):429-34. PubMed ID: 19206566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silicon nanowires as field-effect transducers for biosensor development: a review.
    Noor MO; Krull UJ
    Anal Chim Acta; 2014 May; 825():1-25. PubMed ID: 24767146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Top-down fabrication of sub-30 nm monocrystalline silicon nanowires using conventional microfabrication.
    Chen S; Bomer JG; van der Wiel WG; Carlen ET; van den Berg A
    ACS Nano; 2009 Nov; 3(11):3485-92. PubMed ID: 19856905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Silicon nanowire transistors with a channel width of 4 nm fabricated by atomic force microscope nanolithography.
    Martinez J; Martínez RV; Garcia R
    Nano Lett; 2008 Nov; 8(11):3636-9. PubMed ID: 18826289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Top-down fabricated silicon-nanowire-based field-effect transistor device on a (111) silicon wafer.
    Yu X; Wang Y; Zhou H; Liu Y; Wang Y; Li T; Wang Y
    Small; 2013 Feb; 9(4):525-30. PubMed ID: 23143874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-temperature growth of silicon nanotubes and nanowires on amorphous substrates.
    Mbenkum BN; Schneider AS; Schütz G; Xu C; Richter G; van Aken PA; Majer G; Spatz JP
    ACS Nano; 2010 Apr; 4(4):1805-12. PubMed ID: 20218667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alloy-assisted deposition of three-dimensional arrays of atomic gold catalyst for crystal growth studies.
    Fang Y; Jiang Y; Cherukara MJ; Shi F; Koehler K; Freyermuth G; Isheim D; Narayanan B; Nicholls AW; Seidman DN; Sankaranarayanan SKRS; Tian B
    Nat Commun; 2017 Dec; 8(1):2014. PubMed ID: 29222439
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High frequency top-down junction-less silicon nanowire resonators.
    Koumela A; Hentz S; Mercier D; Dupré C; Ollier E; Feng PX; Purcell ST; Duraffourg L
    Nanotechnology; 2013 Nov; 24(43):435203. PubMed ID: 24107321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In-plane epitaxial growth of silicon nanowires and junction formation on Si(100) substrates.
    Yu L; Xu M; Xu J; Xue Z; Fan Z; Picardi G; Fortuna F; Wang J; Xu J; Shi Y; Chen K; Roca i Cabarrocas P
    Nano Lett; 2014 Nov; 14(11):6469-74. PubMed ID: 25343717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions.
    Huang Z; Shimizu T; Senz S; Zhang Z; Zhang X; Lee W; Geyer N; Gösele U
    Nano Lett; 2009 Jul; 9(7):2519-25. PubMed ID: 19480399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ge
    Kang Y; Xu S; Han K; Kong EY; Song Z; Luo S; Kumar A; Wang C; Fan W; Liang G; Gong X
    Nano Lett; 2021 Jul; 21(13):5555-5563. PubMed ID: 34105972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultra-high aspect ratio Si nanowires fabricated with plasma etching: plasma processing, mechanical stability analysis against adhesion and capillary forces and oleophobicity.
    Zeniou A; Ellinas K; Olziersky A; Gogolides E
    Nanotechnology; 2014 Jan; 25(3):035302. PubMed ID: 24346308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silicon Nanowire Heterojunction Solar Cells with an Al
    Kato S; Kurokawa Y; Gotoh K; Soga T
    Nanoscale Res Lett; 2019 Mar; 14(1):99. PubMed ID: 30877482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlling the Geometries of Si Nanowires through Tunable Nanosphere Lithography.
    Li L; Fang Y; Xu C; Zhao Y; Wu K; Limburg C; Jiang P; Ziegler KJ
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7368-7375. PubMed ID: 28067037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth time-dependent density and surface evolution of silicon nanowires in a vapor-liquid-solid process.
    Lee CY; Kim GS; Lee SY; Kim TH; Seo DW; Lee SK
    J Nanosci Nanotechnol; 2011 Aug; 11(8):6946-52. PubMed ID: 22103103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radial junction amorphous silicon solar cells on PECVD-grown silicon nanowires.
    Yu L; O'Donnell B; Foldyna M; Roca i Cabarrocas P
    Nanotechnology; 2012 May; 23(19):194011. PubMed ID: 22539188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.