These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36084232)

  • 1. High-Resolution Electron Tomography of Ultrathin Boerdijk-Coxeter-Bernal Nanowire Enabled by Superthin Metal Surface Coating.
    Song X; Zhang X; Chang Q; Yao X; Li M; Zhang R; Liu X; Song C; Ng YXA; Ang EH; Ou Z
    Small; 2022 Oct; 18(41):e2203310. PubMed ID: 36084232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral gold nanowires with Boerdijk-Coxeter-Bernal structure.
    Zhu Y; He J; Shang C; Miao X; Huang J; Liu Z; Chen H; Han Y
    J Am Chem Soc; 2014 Sep; 136(36):12746-52. PubMed ID: 25126894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam.
    Xu S; Tian M; Wang J; Xu J; Redwing JM; Chan MH
    Small; 2005 Dec; 1(12):1221-9. PubMed ID: 17193423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helical Growth of Ultrathin Gold-Copper Nanowires.
    Mendoza-Cruz R; Bazán-Díaz L; Velázquez-Salazar JJ; Plascencia-Villa G; Bahena-Uribe D; Reyes-Gasga J; Romeu D; Guisbiers G; Herrera-Becerra R; José-Yacamán M
    Nano Lett; 2016 Mar; 16(3):1568-73. PubMed ID: 26849249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrathin gold nanoframes through surfactant-free templating of faceted pentagonal silver nanoparticles.
    McEachran M; Keogh D; Pietrobon B; Cathcart N; Gourevich I; Coombs N; Kitaev V
    J Am Chem Soc; 2011 Jun; 133(21):8066-9. PubMed ID: 21557604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Criteria and considerations for preparing atom-probe tomography specimens of nanomaterials utilizing an encapsulation methodology.
    Sun Z; Hazut O; Yerushalmi R; Lauhon LJ; Seidman DN
    Ultramicroscopy; 2018 Jan; 184(Pt A):225-233. PubMed ID: 28985626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution-phase epitaxial growth of quasi-monocrystalline cuprous oxide on metal nanowires.
    Sciacca B; Mann SA; Tichelaar FD; Zandbergen HW; van Huis MA; Garnett EC
    Nano Lett; 2014 Oct; 14(10):5891-8. PubMed ID: 25233392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How Copper Nanowires Grow and How To Control Their Properties.
    Ye S; Stewart IE; Chen Z; Li B; Rathmell AR; Wiley BJ
    Acc Chem Res; 2016 Mar; 49(3):442-51. PubMed ID: 26872359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental evidence of icosahedral and decahedral packing in one-dimensional nanostructures.
    Velázquez-Salazar JJ; Esparza R; Mejía-Rosales SJ; Estrada-Salas R; Ponce A; Deepak FL; Castro-Guerrero C; José-Yacamán M
    ACS Nano; 2011 Aug; 5(8):6272-8. PubMed ID: 21790155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructural transformation and formation of heterojunctions from Si nanowires.
    Wong TL; Cheng C; Li W; Fung KK; Wang N
    ACS Nano; 2010 Oct; 4(10):5559-64. PubMed ID: 20845917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic measurements from in situ TEM observations.
    Sharma R
    Microsc Res Tech; 2009 Mar; 72(3):144-52. PubMed ID: 19130611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating connectivity and electrical conductivity in metallic nanowire networks.
    Nirmalraj PN; Bellew AT; Bell AP; Fairfield JA; McCarthy EK; O'Kelly C; Pereira LF; Sorel S; Morosan D; Coleman JN; Ferreira MS; Boland JJ
    Nano Lett; 2012 Nov; 12(11):5966-71. PubMed ID: 23062152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Features of transport in ultrathin gold nanowire structures.
    Pud S; Kisner A; Heggen M; Belaineh D; Temirov R; Simon U; Offenhäusser A; Mourzina Y; Vitusevich S
    Small; 2013 Mar; 9(6):846-52. PubMed ID: 23125023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1-D Metal Nanobead Arrays within Encapsulated Nanowires via a Red-Ox-Induced Dewetting: Mechanism Study by Atom-Probe Tomography.
    Sun Z; Tzaguy A; Hazut O; Lauhon LJ; Yerushalmi R; Seidman DN
    Nano Lett; 2017 Dec; 17(12):7478-7486. PubMed ID: 29116798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From metal nanowires to ultrathin crystalline ALD nanotubes: process development and mechanism revealed by
    Vogl LM; Schweizer P; Pethö L; Sharma A; Michler J; Utke I
    Nanoscale; 2023 Jun; 15(21):9477-9483. PubMed ID: 37161753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-dependent fracture mode transition in copper nanowires.
    Peng C; Zhan Y; Lou J
    Small; 2012 Jun; 8(12):1889-94. PubMed ID: 22461261
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Cheek Q; Fahrenkrug E; Hlynchuk S; Alsem DH; Salmon NJ; Maldonado S
    ACS Nano; 2020 Mar; 14(3):2869-2879. PubMed ID: 32083842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating plasmonic transport in current-carrying silver nanowires.
    Song M; Stolz A; Zhang D; Arocas J; Markey L; Colas des Francs G; Dujardin E; Bouhelier A
    J Vis Exp; 2013 Dec; (82):e51048. PubMed ID: 24378340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional characterization of noble-metal nanoparticles and their assemblies by electron tomography.
    Bals S; Goris B; Liz-Marzán LM; Van Tendeloo G
    Angew Chem Int Ed Engl; 2014 Sep; 53(40):10600-10. PubMed ID: 25132322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.