BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36084349)

  • 1. Chenodeoxycholic acid suppresses AML progression through promoting lipid peroxidation via ROS/p38 MAPK/DGAT1 pathway and inhibiting M2 macrophage polarization.
    Liu J; Wei Y; Jia W; Can C; Wang R; Yang X; Gu C; Liu F; Ji C; Ma D
    Redox Biol; 2022 Oct; 56():102452. PubMed ID: 36084349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corrigendum to "Chenodeoxycholic acid suppresses AML progression through promoting lipid peroxidation via ROS/p38 MAPK/DGAT1 pathway and inhibiting M2 macrophage polarization" [Redox Biol. 56 (2022) 102452].
    Liu J; Wei Y; Jia W; Can C; Wang R; Yang X; Gu C; Liu F; Ji C; Ma D
    Redox Biol; 2023 Feb; 59():102566. PubMed ID: 36481115
    [No Abstract]   [Full Text] [Related]  

  • 3. Supplementation with linoleic acid-rich soybean oil stimulates macrophage foam cell formation via increased oxidative stress and diacylglycerol acyltransferase1-mediated triglyceride biosynthesis.
    Rom O; Jeries H; Hayek T; Aviram M
    Biofactors; 2017 Jan; 43(1):100-116. PubMed ID: 27517171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acidic deoxycholic acid and chenodeoxycholic acid induce interleukin-8 production through p38 mitogen-activated protein kinase and protein kinase A in a squamous epithelial model.
    Shan J; Oshima T; Fukui H; Watari J; Miwa H
    J Gastroenterol Hepatol; 2013 May; 28(5):823-8. PubMed ID: 23425072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PPM1D Knockdown Suppresses Cell Proliferation, Promotes Cell Apoptosis, and Activates p38 MAPK/p53 Signaling Pathway in Acute Myeloid Leukemia.
    Li B; Hu J; He D; Chen Q; Liu S; Zhu X; Yu M
    Technol Cancer Res Treat; 2020; 19():1533033820942312. PubMed ID: 32691668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NOXA-mediated degradation of MCL1 and BCL2L1 causes apoptosis of daunorubicin-treated human acute myeloid leukemia cells.
    Chiou JT; Huang NC; Huang CH; Wang LJ; Lee YC; Shi YJ; Chang LS
    J Cell Physiol; 2021 Nov; 236(11):7356-7375. PubMed ID: 33982799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms for Bile Acids CDCA- and DCA-Stimulated Hepatic Spexin Expression.
    Lai Q; Ma Y; Bai J; Zhuang M; Pei S; He N; Yin J; Fan B; Bian Z; Zeng G; Lin C
    Cells; 2022 Jul; 11(14):. PubMed ID: 35883602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Yin and Yang of bile acid action on tight junctions in a model colonic epithelium.
    Sarathy J; Detloff SJ; Ao M; Khan N; French S; Sirajuddin H; Nair T; Rao MC
    Physiol Rep; 2017 May; 5(10):e13294. PubMed ID: 28554966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of chenodeoxycholic acid feeding during gestation in the rat on bile acid metabolism and liver morphology.
    Sprinkle DJ; Hassan AS; Subbiah MT
    Proc Soc Exp Biol Med; 1984 Mar; 175(3):386-97. PubMed ID: 6694986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophilic but not hydrophobic bile acids prevent gallbladder muscle dysfunction in acute cholecystitis.
    Xiao ZL; Biancani P; Carey MC; Behar J
    Hepatology; 2003 Jun; 37(6):1442-50. PubMed ID: 12774024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of feeding cholic acid and chenodeoxycholic acid on cholesterol absorption and hepatic secretion of biliary lipids in man.
    Einarsson K; Grundy SM
    J Lipid Res; 1980 Jan; 21(1):23-34. PubMed ID: 7354252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chenodeoxycholic acid suppresses the activation of acetyl-coenzyme A carboxylase-alpha gene transcription by the liver X receptor agonist T0-901317.
    Talukdar S; Bhatnagar S; Dridi S; Hillgartner FB
    J Lipid Res; 2007 Dec; 48(12):2647-63. PubMed ID: 17823458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatic cholesterol and bile acid metabolism in subjects with gallstones: comparative effects of short erm feeding of chenodeoxycholic and ursodeoxycholic acid.
    Carulli N; Ponz De Leon M; Zironi F; Pinetti A; Smerieri A; Iori R; Loria P
    J Lipid Res; 1980 Jan; 21(1):35-43. PubMed ID: 7354253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling.
    Hole PS; Zabkiewicz J; Munje C; Newton Z; Pearn L; White P; Marquez N; Hills RK; Burnett AK; Tonks A; Darley RL
    Blood; 2013 Nov; 122(19):3322-30. PubMed ID: 24089327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of bile acids on beta-adrenoceptors, fluidity, and the extent of lipid peroxidation in rat cardiac membranes.
    Gazawi H; Ljubuncic P; Cogan U; Hochgraff E; Ben-Shachar D; Bomzon A
    Biochem Pharmacol; 2000 Jun; 59(12):1623-8. PubMed ID: 10799661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethyl acetate extract of Caesalpinia sappan L. inhibited acute myeloid leukemia via ROS-mediated apoptosis and differentiation.
    Ma HY; Wang CQ; He H; Yu ZY; Tong Y; Liu G; Yang YQ; Li L; Pang L; Qi HY
    Phytomedicine; 2020 Mar; 68():153142. PubMed ID: 32045840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ghrelin ameliorates A549 cell apoptosis caused by paraquat via p38-MAPK regulated mitochondrial apoptotic pathway.
    Cui S; Nian Q; Chen G; Wang X; Zhang J; Qiu J; Zhang Z
    Toxicology; 2019 Oct; 426():152267. PubMed ID: 31381934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balance of NF-kappaB and p38 MAPK is a determinant of radiosensitivity of the AML-2 and its doxorubicin-resistant cell lines.
    Choi CH; Xu H; Bark H; Lee TB; Yun J; Kang SI; Oh YK
    Leuk Res; 2007 Sep; 31(9):1267-76. PubMed ID: 17218010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of low dose chenodeoxycholic acid feeding on biliary lipid metabolism.
    Adler RD; Bennion LJ; Duane WC; Grundy SM
    Gastroenterology; 1975 Feb; 68(2):326-34. PubMed ID: 1116678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower phosphorylation of p38 MAPK blocks the oxidative stress-induced senescence in myeloid leukemic CD34(+)CD38 (-) cells.
    Xiao Y; Zou P; Wang J; Song H; Zou J; Liu L
    J Huazhong Univ Sci Technolog Med Sci; 2012 Jun; 32(3):328-333. PubMed ID: 22684553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.