These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 36084352)

  • 1. Boron nitride nanotubes reinforced gelatin hydrogel-based ink for bioprinting and tissue engineering applications.
    Kakarla AB; Kong I; Nguyen TH; Kong C; Irving H
    Biomater Adv; 2022 Oct; 141():213103. PubMed ID: 36084352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extrusion-Based Bioprinted Boron Nitride Nanotubes Reinforced Alginate Scaffolds: Mechanical, Printability and Cell Viability Evaluation.
    Kakarla AB; Kong I; Kong C; Irving H
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boron nitride nanotubes included thermally cross-linked gelatin-glucose scaffolds show improved properties.
    Şen Ö; Culha M
    Colloids Surf B Biointerfaces; 2016 Feb; 138():41-9. PubMed ID: 26642075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering.
    Contessi Negrini N; Celikkin N; Tarsini P; Farè S; Święszkowski W
    Biofabrication; 2020 Jan; 12(2):025001. PubMed ID: 31715587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting.
    Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ
    J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering.
    Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications.
    Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS
    Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D bioprinting of fish skin-based gelatin methacryloyl (GelMA) bio-ink for use as a potential skin substitute.
    Tanadchangsaeng N; Pasanaphong K; Tawonsawatruk T; Rattanapinyopituk K; Tangketsarawan B; Rawiwet V; Kongchanagul A; Srikaew N; Yoyruerop T; Panupinthu N; Sangpayap R; Panaksri A; Boonyagul S; Hemstapat R
    Sci Rep; 2024 Oct; 14(1):23240. PubMed ID: 39369014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels.
    Bertassoni LE; Cardoso JC; Manoharan V; Cristino AL; Bhise NS; Araujo WA; Zorlutuna P; Vrana NE; Ghaemmaghami AM; Dokmeci MR; Khademhosseini A
    Biofabrication; 2014 Jun; 6(2):024105. PubMed ID: 24695367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprinting: Mechanical Stabilization and Reinforcement Strategies in Regenerative Medicine.
    Ballard A; Patush R; Perez J; Juarez C; Kirillova A
    Tissue Eng Part A; 2024 Jul; 30(13-14):387-408. PubMed ID: 38205634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization.
    Dutta SD; Ganguly K; Randhawa A; Patil TV; Patel DK; Lim KT
    Biomaterials; 2023 Mar; 294():121999. PubMed ID: 36669301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extrusion of Cell Encapsulated in Boron Nitride Nanotubes Reinforced Gelatin-Alginate Bioink for 3D Bioprinting.
    Kakarla AB; Kong I; Kong C; Irving H; Thomas CJ
    Gels; 2022 Sep; 8(10):. PubMed ID: 36286104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration.
    Miao G; Liang L; Li W; Ma C; Pan Y; Zhao H; Zhang Q; Xiao Y; Yang X
    Biomolecules; 2023 Jun; 13(7):. PubMed ID: 37509098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds.
    Sultan S; Mathew AP
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of polycaprolactone (PCL) scaffolds for hybrid 3D-bioprinting with alginate-gelatin hydrogel.
    Koch F; Thaden O; Conrad S; Tröndle K; Finkenzeller G; Zengerle R; Kartmann S; Zimmermann S; Koltay P
    J Mech Behav Biomed Mater; 2022 Jun; 130():105219. PubMed ID: 35413680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells.
    Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG
    Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels.
    Rutz AL; Hyland KE; Jakus AE; Burghardt WR; Shah RN
    Adv Mater; 2015 Mar; 27(9):1607-14. PubMed ID: 25641220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-Network Polyurethane-Gelatin Hydrogel with Tunable Modulus for High-Resolution 3D Bioprinting.
    Hsieh CT; Hsu SH
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32746-32757. PubMed ID: 31407899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.