These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36084430)
1. The protective role and mechanism of melanin for Aspergillus niger and Aspergillus flavus against chlorine-based disinfectants. Xu X; Cao R; Li K; Wan Q; Wu G; Lin Y; Huang T; Wen G Water Res; 2022 Sep; 223():119039. PubMed ID: 36084430 [TBL] [Abstract][Full Text] [Related]
2. Formation of filamentous fungal biofilms in water and the transformation of resistance to chlor(am)ine disinfection. Chang B; Wan Q; Wu G; Cheng Y; Wang J; Huang T; Wen G J Hazard Mater; 2024 Sep; 476():135138. PubMed ID: 38996681 [TBL] [Abstract][Full Text] [Related]
3. Inactivation and subsequent reactivation of Aspergillus species by the combination of UV and monochloramine: Comparisons with UV/chlorine. Wu G; Zhao H; Wan Q; Xu X; Cao R; Li K; Wang J; Huang T; Lu J; Wen G J Environ Sci (China); 2022 Jul; 117():105-118. PubMed ID: 35725063 [TBL] [Abstract][Full Text] [Related]
4. Development of fungal spore staining methods for flow cytometric quantification and their application in chlorine-based disinfection. Wen G; Cao R; Wan Q; Tan L; Xu X; Wang J; Huang T Chemosphere; 2020 Mar; 243():125453. PubMed ID: 31995893 [TBL] [Abstract][Full Text] [Related]
5. Occurrence of fungal spores in drinking water: A review of pathogenicity, odor, chlorine resistance and control strategies. Zhao HX; Zhang TY; Wang H; Hu CY; Tang YL; Xu B Sci Total Environ; 2022 Dec; 853():158626. PubMed ID: 36087680 [TBL] [Abstract][Full Text] [Related]
6. Synergistic effect of ozone and chlorine on inactivating fungal spores: Influencing factors and mechanisms. Liang Z; Xu X; Cao R; Wan Q; Xu H; Wang J; Lin Y; Huang T; Wen G J Hazard Mater; 2021 Oct; 420():126610. PubMed ID: 34271445 [TBL] [Abstract][Full Text] [Related]
7. The aggregation of Aspergillus spores and the impact on their inactivation by chlorine-based disinfectants. Zhang H; Xu X; Tan L; Liang Z; Cao R; Wan Q; Xu H; Wang J; Huang T; Wen G Water Res; 2021 Oct; 204():117629. PubMed ID: 34509870 [TBL] [Abstract][Full Text] [Related]
8. Solar/ClO Cao S; Wan Q; Cao R; Wang J; Huang T; Wen G Sci Total Environ; 2024 Oct; 948():174886. PubMed ID: 39032749 [TBL] [Abstract][Full Text] [Related]
9. Free chlorine and monochloramine inactivation kinetics of Aspergillus and Penicillium in drinking water. Ma X; Bibby K Water Res; 2017 Sep; 120():265-271. PubMed ID: 28501787 [TBL] [Abstract][Full Text] [Related]
10. Pseudomonas aeruginosa inactivation mechanism is affected by capsular extracellular polymeric substances reactivity with chlorine and monochloramine. Xue Z; Hessler CM; Panmanee W; Hassett DJ; Seo Y FEMS Microbiol Ecol; 2013 Jan; 83(1):101-11. PubMed ID: 22809489 [TBL] [Abstract][Full Text] [Related]
11. Inactivation of biofilm bacteria. LeChevallier MW; Cawthon CD; Lee RG Appl Environ Microbiol; 1988 Oct; 54(10):2492-9. PubMed ID: 2849380 [TBL] [Abstract][Full Text] [Related]
12. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability. Korich DG; Mead JR; Madore MS; Sinclair NA; Sterling CR Appl Environ Microbiol; 1990 May; 56(5):1423-8. PubMed ID: 2339894 [TBL] [Abstract][Full Text] [Related]
13. Decontamination of Bacillus spores adhered to iron and cement-mortar drinking water infrastructure in a model system using disinfectants. Szabo JG; Meiners G; Heckman L; Rice EW; Hall J J Environ Manage; 2017 Feb; 187():1-7. PubMed ID: 27865123 [TBL] [Abstract][Full Text] [Related]
14. Disinfection efficacy of chlorine and peracetic acid alone or in combination against Aspergillus spp. and Candida albicans in drinking water. Sisti M; Brandi G; De Santi M; Rinaldi L; Schiavano GF J Water Health; 2012 Mar; 10(1):11-9. PubMed ID: 22361698 [TBL] [Abstract][Full Text] [Related]
15. Inactivation of three genera of dominant fungal spores in groundwater using chlorine dioxide: Effectiveness, influencing factors, and mechanisms. Wen G; Xu X; Huang T; Zhu H; Ma J Water Res; 2017 Nov; 125():132-140. PubMed ID: 28843153 [TBL] [Abstract][Full Text] [Related]
16. Chlorine inactivation of fungal spores on cereal grains. Andrews S; Pardoel D; Harun A; Treloar T Int J Food Microbiol; 1997 Apr; 35(2):153-62. PubMed ID: 9105923 [TBL] [Abstract][Full Text] [Related]
17. Chlorine and Monochloramine Disinfection of Buse HY; J Morris B; Struewing IT; Szabo JG Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683743 [TBL] [Abstract][Full Text] [Related]
18. The effect of disinfectants on a geosmin-producing strain of Streptomyces griseus. Whitmore TN; Denny S J Appl Bacteriol; 1992 Feb; 72(2):160-5. PubMed ID: 1556039 [TBL] [Abstract][Full Text] [Related]
19. Monochloramine and chlorine dioxide for controlling Legionella pneumophila contamination: biocide levels and disinfection by-product formation in hospital water networks. Marchesi I; Ferranti G; Bargellini A; Marchegiano P; Predieri G; Stout JE; Borella P J Water Health; 2013 Dec; 11(4):738-47. PubMed ID: 24334848 [TBL] [Abstract][Full Text] [Related]
20. Response surface modeling for the inactivation of Bacillus subtilis subsp. niger spores by chlorine dioxide gas in an enclosed space. Wang T; Qi J; Wu J; Hao L; Yi Y; Lin S; Zhang Z J Air Waste Manag Assoc; 2016 May; 66(5):508-17. PubMed ID: 26853499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]