These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36084443)

  • 1. Mechanistic insight into the charge carrier separation and molecular oxygen activation of manganese doping BiOBr hollow microspheres.
    He Z; Fareed H; Yang H; Xia Y; Su J; Wang L; Kang L; Wu M; Huang Z
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):355-367. PubMed ID: 36084443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-doping TiO
    Li C; Gu M; Gao M; Liu K; Zhao X; Cao N; Feng J; Ren Y; Wei T; Zhang M
    J Colloid Interface Sci; 2022 Mar; 609():341-352. PubMed ID: 34896834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating oxygen vacancies on bismuth-molybdate hierarchical hollow microspheres for photocatalytic selective alcohol oxidation with hydrogen peroxide production.
    Chen C; Qiu G; Wang T; Zheng Z; Huang M; Li B
    J Colloid Interface Sci; 2021 Jun; 592():1-12. PubMed ID: 33639533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible-light-driven photocatalytic degradation of ofloxacin by BiOBr nanocomposite modified with oxygen vacancies and N-doped CQDs: Enhanced photodegradation performance and mechanism.
    Zhang Z; Wang Y; Gao P; Feng L; Zhang L; Liu Y; Du Z
    Chemosphere; 2022 Nov; 307(Pt 3):135976. PubMed ID: 35944686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The synergistic effect of Cl doping and Bi coupling to promote the carrier separation of BiOBr for efficient photocatalytic nitrogen reduction.
    Lv S; Guo F; Li K; Wang D; Gao H; Song C
    J Colloid Interface Sci; 2025 Jan; 677(Pt A):831-841. PubMed ID: 39126801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen vacancies induced by zirconium doping in bismuth ferrite nanoparticles for enhanced photocatalytic performance.
    Wang F; Chen D; Zhang N; Wang S; Qin L; Sun X; Huang Y
    J Colloid Interface Sci; 2017 Dec; 508():237-247. PubMed ID: 28841482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen vacancies mediated Bi
    Chen X; Liu G; Xu X; Wang B; Sun SX; Xia J; Li H
    J Colloid Interface Sci; 2022 Mar; 609():23-32. PubMed ID: 34890949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous formation of Bi
    Lee GY; Cho EC; Lo PY; Zheng JH; Huang JH; Chen YL; Lee KC
    Chemosphere; 2020 Nov; 258():127384. PubMed ID: 32947660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Morphology and Band Structure Manipulation of BiOBr by Te Doping for Enhanced Photocatalytic Oxygen Evolution.
    Song J; Ma Y; Zhang Q; Zhang C; Wu X
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59444-59453. PubMed ID: 38091379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen vacancy-rich hierarchical BiOBr hollow microspheres with dramatic CO
    Zhao J; Miao Z; Zhang Y; Wen G; Liu L; Wang X; Cao X; Wang B
    J Colloid Interface Sci; 2021 Jul; 593():231-243. PubMed ID: 33744533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bismuth oxyhalide quantum dots modified sodium titanate necklaces with exceptional population of oxygen vacancies and photocatalytic activity.
    Shi Q; Raza A; Xu L; Li G
    J Colloid Interface Sci; 2022 Nov; 625():750-760. PubMed ID: 35772205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron-Level Mechanistic Insights into Ce Doping for Enhanced Efficiency Degradation of Bisphenol A under Visible Light Irradiation.
    Zeng Q; Wang CY; Xu BX; Han J; Fang X; Zhu G
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous Mn doped g-C
    Wang JC; Cui CX; Li Y; Liu L; Zhang YP; Shi W
    J Hazard Mater; 2017 Oct; 339():43-53. PubMed ID: 28622582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into the mechanism of deep NO photo-oxidation by bismuth tantalate with oxygen vacancies.
    Liu L; Ouyang P; Li Y; Duan Y; Dong F; Lv K
    J Hazard Mater; 2022 Oct; 439():129637. PubMed ID: 35901631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the adsorption-photocatalytic efficiency of BiOBr for Congo red degradation by tuning the surface charge and bandgap
    Chen D; Gong K; Xu X; Huang C; Lei P
    Phys Chem Chem Phys; 2024 Jun; 26(24):17155-17170. PubMed ID: 38847473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel 0D/2D WS
    Fu S; Yuan W; Liu X; Yan Y; Liu H; Li L; Zhao F; Zhou J
    J Colloid Interface Sci; 2020 Jun; 569():150-163. PubMed ID: 32105902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-assisted synthesis of 3D Bi
    Huang C; Ma S; Zong Y; Gu J; Xue J; Wang M
    Photochem Photobiol Sci; 2020 Dec; 19(12):1697-1706. PubMed ID: 33215628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene oxide mediated co-generation of C-doping and oxygen defects in Bi
    Sun M; Dong X; Lei B; Li J; Chen P; Zhang Y; Dong F
    Nanoscale; 2019 Nov; 11(43):20562-20570. PubMed ID: 31661108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Insights into Cd
    Sheng H; Wang W; Dai R; Ning J; Zhang L; Wu Q; Zhang F; Yan J; Zhang W
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33562318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Step-doped disulfide vacancies and functional groups synergistically enhance photocatalytic activity of S-scheme Cu
    Li Z; Lan D; Li Z; Sun J; Chen S; Yang J; Wei J; Yu Z; Wang S; Hou Y
    Chemosphere; 2022 Aug; 301():134684. PubMed ID: 35472610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.