BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36084514)

  • 1. The influence of intra-cortical microstructure on the contrast in ultrasound images of the cortex of long bones: A 2D simulation study.
    Dia AS; Renaud G; Nooghabi AH; Grimal Q
    Ultrasonics; 2023 Jan; 127():106831. PubMed ID: 36084514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound Scattering in Cortical Bone.
    Karbalaeisadegh Y; Muller M
    Adv Exp Med Biol; 2022; 1364():177-196. PubMed ID: 35508876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone cortical thickness and porosity assessment using ultrasound guided waves: An ex vivo validation study.
    Minonzio JG; Bochud N; Vallet Q; Bala Y; Ramiandrisoa D; Follet H; Mitton D; Laugier P
    Bone; 2018 Nov; 116():111-119. PubMed ID: 30056165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound Characterization of Cortical Bone Using Shannon Entropy.
    Karbalaeisadegh Y; Yao S; Zhu Y; Grimal Q; Muller M
    Ultrasound Med Biol; 2023 Aug; 49(8):1824-1829. PubMed ID: 37244812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound propagation in cortical bone: Axial transmission and backscattering simulations.
    Potsika VT; Grivas KN; Gortsas T; Protopappas VC; Polyzos DK; Raum K; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1456-9. PubMed ID: 26736544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone.
    Eneh CT; Malo MK; Karjalainen JP; Liukkonen J; Töyräs J; Jurvelin JS
    Med Phys; 2016 May; 43(5):2030. PubMed ID: 27147315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Simulation and Non-Destructive Characterization of Material Property and Defect Analysis of Cortical Bone Using Laser Ultrasound Techniques.
    Yang CH; Jeyaprakash N; Tseng YJ
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3917-3932. PubMed ID: 34325509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of Cortical Bone Microstructure From Ultrasound Backscatter.
    Iori G; Du J; Hackenbeck J; Kilappa V; Raum K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1081-1095. PubMed ID: 33104498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Thickness and Speed of Sound in Cortical Bone Using Multifocus Pulse-Echo Ultrasound.
    Nguyen Minh H; Du J; Raum K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):568-579. PubMed ID: 31647428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements.
    Hage IS; Hamade RF
    J Mater Sci Mater Med; 2017 Sep; 28(9):135. PubMed ID: 28762142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial neural network to estimate micro-architectural properties of cortical bone using ultrasonic attenuation: A 2-D numerical study.
    Mohanty K; Yousefian O; Karbalaeisadegh Y; Ulrich M; Grimal Q; Muller M
    Comput Biol Med; 2019 Nov; 114():103457. PubMed ID: 31600691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Index-Rotated Fast Ultrasound Imaging of Cortical Bone Based on Predicted Velocity Model.
    Shi Q; Li Y; Liu Y; Gu M; Song X; Liu C; Ta D; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 May; 69(5):1582-1595. PubMed ID: 35275812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Sided Ultrasound Imaging of the Bone Cortex: Anatomy, Tissue Characterization and Blood Flow.
    Renaud G; Salles S
    Adv Exp Med Biol; 2022; 1364():197-225. PubMed ID: 35508877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of porosity, pore size, and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study.
    Rohde K; Rohrbach D; Glüer CC; Laugier P; Grimal Q; Raum K; Barkmann R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):302-13. PubMed ID: 24474136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial distribution of anisotropic acoustic impedance assessed by time-resolved 50-MHz scanning acoustic microscopy and its relation to porosity in human cortical bone.
    Saïed A; Raum K; Leguerney I; Laugier P
    Bone; 2008 Jul; 43(1):187-194. PubMed ID: 18407822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The respective and dependent effects of scattering and bone matrix absorption on ultrasound attenuation in cortical bone.
    McCandless BA; Raum K; Muller M
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38631364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound tomography in bone mimicking phantoms: Simulations and experiments.
    Falardeau T; Belanger P
    J Acoust Soc Am; 2018 Nov; 144(5):2937. PubMed ID: 30522285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrashort echo time magnetic resonance imaging (UTE-MRI) of cortical bone correlates well with histomorphometric assessment of bone microstructure.
    Jerban S; Ma Y; Wong JH; Nazaran A; Searleman A; Wan L; Williams J; Du J; Chang EY
    Bone; 2019 Jun; 123():8-17. PubMed ID: 30877070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of multiple acoustic wave modes for assessment of long bones: model study.
    Tatarinov A; Sarvazyan N; Sarvazyan A
    Ultrasonics; 2005 Aug; 43(8):672-80. PubMed ID: 15982472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deterioration of bone microstructure by aging and menopause in Japanese healthy women: analysis by HR-pQCT.
    Yokota K; Chiba K; Okazaki N; Kondo C; Doi M; Yamada S; Era M; Nishino Y; Yonekura A; Tomita M; Osaki M
    J Bone Miner Metab; 2020 Nov; 38(6):826-838. PubMed ID: 32519249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.